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CANONICAL BASES ARISING FROM QUANTUM

SYMMETRIC PAIRS

HUANCHEN BAO AND WEIQIANG WANG

Abstract. We develop a general theory of canonical bases for quantum symmetric
pairs (U,Uı) with parameters of arbitrary finite type. We construct new canonical
bases for the finite-dimensional simple U-modules and their tensor products regarded
as U

ı-modules. We also construct a canonical basis for the modified form of the
ıquantum group U

ı. To that end, we establish several new structural results on
quantum symmetric pairs, such as bilinear forms, braid group actions, integral forms,
Levi subalgebras (of real rank one), and integrality of the intertwiners.
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1. Introduction

1.1. Background. Let U = Uq(g) be the Drinfeld-Jimbo quantum group with trian-
gular decomposition U = U−U0U+. Lusztig [Lu90, Lu91] constructed the canonical
basis on an integral A-form AU

− of U− and compatible canonical bases on finite-
dimensional simple U-modules L(λ) (using perverse sheaves for general type, or via
PBW basis in finite type as well), where A = Z[q, q−1]. Kashiwara [Ka91] gave a dif-
ferent algebraic construction of the canonical bases by globalizing the crystal bases at
q = 0.

In [Lu92], Lusztig constructed the canonical bases on the tensor product of a lowest
weight module and a highest weight module ωL(λ)⊗L(µ), for dominant integral weights
λ, µ ∈ X+. Based on various compatibilities of the canonical bases as λ, µ vary, he
further constructed the canonical bases on the modified form U̇. All these constructions
fit in the notion of based modules (see [Lu94] for finite type and [BW16] for general
type).

Given an involution θ on a complex simple Lie algebra g, we obtain a symmetric
pair (g, gθ), or a pair of enveloping algebras (U(g),U(gθ)), where gθ denotes the fixed
point subalgebra. The classification of symmetric pairs of finite type is equivalent to the
classification of real simple Lie algebras, which goes back to Élie Cartan, cf. [OV]; these
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classifications are often described in terms of the Satake diagrams; see [Ar62]. Recall
a Satake diagram consists of a partition of the nodes of a Dynkin diagram, I = I• ∪ I◦,
and a (possibly trivial) Dynkin diagram involution τ ; see Table 4.

As a quantization of (U(g),U(gθ)), a theory of quantum symmetric pairs (U,Uı) of
finite type was systematically developed by Letzter [Le99, Le02]. Such a Uı of finite
type is constructed from the Satake diagrams. In this theory, Uı is a coideal subalgebra
of U with parameters (i.e., the comultiplication ∆ on U satisfies ∆ : Uı → Uı⊗U) but
not a Hopf subalgebra of U, and θ is quantized as an automorphism (but not of order
2) of U. The algebra Uı has a complicated presentation including nonhomogeneous
Serre type relations. The quantum symmetric pairs (QSP for short) have been further
studied and generalized to the Kac-Moody setting by Kolb [Ko14]. The algebra Uı on
its own will be also referred to as an ıquantum group.

1.2. The goal. The goal of this paper is to develop systematically a theory of canonical
basis for quantum symmetric pairs of arbitrary finite type. Actually several main
constructions of this paper work in the Kac-Moody generality, though we shall assume
the QSPs are of finite type throughout the paper unless otherwise specified. We shall
construct a new canonical basis (called ı-canonical basis) on the modified form U̇ı of
the ıquantum group Uı as well as ı-canonical bases on based U-modules, including
simple finite-dimensional U-modules and their tensor products.

It is instructive for us to view various original constructions of canonical bases (see
[Lu94]) as constructions for the QSPs of diagonal type (U⊗U,U) or for the degenerate
QSP with Uı = U (i.e., I• = I).

Canonical bases have numerous applications including category O, algebraic com-
binatorics, total positivity, cluster algebras, categorification, geometric and modular
representation theory. It is our hope that the theory of canonical bases arising from
QSPs can be further developed, and it will lead to new advances in some of these areas.

1.3. What was known? Let us recall the early effort toward the constructions of
canonical bases for a very special case of quantum symmetric pairs, which is of type
AIII/AIV with I• = ∅. In [BW13], the authors constructed the intertwiner Υ (an
analogue of the quasi-R-matrix in the QSP setting), proved Υ is integral, and used it
to define a new bar involution ψı = Υ◦ψ on any based U-module with a bar involution
ψ to obtain a based Uı-module. In particular, we obtain the ı-canonical basis on finite-
dimensional simple U-modules and their tensor products. An application of such an
ı-canonical basis (with a particular choice of parameters) may be found in [BW13].
There the authors formulated a Kazhdan-Lusztig theory for super type B, which was
an open problem for decades.

For type AIII/AIV with I• = ∅, the modified ıquantum group U̇ı and its ı-canonical
basis have been obtained in [BKLW, LW15] using flag varieties of type B/C, gener-

alizing the geometric realization of U̇ by Beilinson-Lusztig-MacPherson [BLM]. The

ı-canonical basis of U̇ı admits positivity with respect to multiplication and comultipli-
cation [LW15, FL15]. The ı-canonical basis of the quantum symmetric pair (U,Uı) with
a different choice of parameters was used in [Bao17] to formulate the Kazhdan-Lusztig
theory for category O of (super) type D. (Connection between quantum symmetric
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pair (U,Uı) and the type D category O was observed in [ES13] independently from
[BW13].)

1.4. Main results. Let us provide a detailed description of the main results.

1.4.1. The ıquantum groups with parameters (and the quantum groups U) given in

[Le99, Ko14] are defined over a field K(q1/d) for a field K ⊃ Q containing some suitable
roots of 1 and d > 1. Confirming an expectation stated in [BW13], Balagovic and
Kolb [BK15a] showed the existence of a bar involution ψı of the ıquantum groups and
determined the constraints on parameters. But for a canonical basis theory, it is more
natural to work with algebras over the field Q(q). In this paper we give a definition of
the ıquantum group Uı over the field Q(q) with slightly modified parameters; see Defi-
nition 3.5 (also compare [BK15]). We further explain (see Lemma 3.10) the parameters
can actually be chosen to be in A = Z[q, q−1] and the bar map ψı makes sense on the
Q(q)-form Uı, as a prerequisite for the theory of ı-canonical bases. Denote by ψ the
bar involution on U.

Observe that the inclusion map Uı → U is not compatible with the two bar maps
on Uı and U. A basic ingredient which we shall need for ı-canonical basis is the
intertwiner Υ for the quantum symmetric pair (U,Uı), which lies in (a completion of)
U+; cf. [BW13, Theorem 2.10] and [BK15, Theorem 6.10] (for a precise formulation
see Theorem 4.8 and Remark 4.9). The intertwiner Υ can be thought as the analog
of Lusztig’s quasi-R-matrix Θ, which intertwines the bar involution on U and the bar
involution on U ⊗ U. A twisted version of Θ is indeed the intertwiner for the QSP
of diagonal type (U ⊗U,U), where U is realized as the subalgebra of U ⊗U via the
coproduct; see Remark 4.10.

1.4.2. Recall Lusztig [Lu90, Lu94] constructed braid group operators T′′w,e and T
′
w,e on

U. The braid group action is used in the definition of Uı when I• 6= ∅.

Theorem A (Theorem 4.2). For any i ∈ I• and e = ±1, the braid group operators T′i,e
and T

′′
i,e restrict to automorphisms of Uı.

In Theorem 4.2 one finds explicit formulas for the actions of T′i,e and T
′′
i,e on the

generators of Uı. Let W and WI• be the Weyl groups associated to I and I•, and let
w0 and w• denote the longest elements in W and WI•, respectively. Different braid
group action for some class of Uı has been constructed in the literature (see [KP11]
and references therein). Theorem A verifies a conjecture of [KP11] on the braid group
action associated to WI• on Uı (this conjecture was established for Uı of type AII
therein).

Recall there is a well-known anti-involution ℘ on U [Ka91, Lu94] (see Proposi-
tion 2.1), which induces a non-degenerate symmetric bilinear form on each finite-
dimensional simple U-module L(λ), for λ ∈ X+.

Proposition B (Proposition 4.6). The anti-involution ℘ on U restricts to an anti-
involution on Uı.

In Proposition 4.6, whose proof relies crucially on Theorem A, one further finds
explicit formulas for the actions of ℘ on the generators of Uı. This result allows us to
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naturally use the same bilinear form on L(λ) viewed as a Uı-module. We shall see this
bilinear form plays a basic role in formulating a non-degenerate bilinear form on the
modified form U̇ı and Theorem H below.

1.4.3. Recall the subspace U+(w) = U+(w, 1), for w ∈ W , is defined in [Lu94, 40.2].
The following proposition imposes more constraint on Υ which will be useful later on.

Proposition C (Proposition 4.15). The intertwiner Υ lies in (a completion of) the
subspace U+(w0w•).

The following is one of the key properties of Υ in our approach toward the canonical
bases for quantum symmetric pairs of finite type.

Theorem D (Theorem 5.3). The intertwiner Υ is integral, that is, we have Υ ∈ AÛ
+.

Theorem D is a generalization of the integrality of the quasi-R-matrix for quantum
groups of finite type [Lu94, 24.1.6], and in the special case of QSP of type AIII/AIV
with I• = ∅ it was proved in [BW13]. The general case here takes much effort to
establish.

1.4.4. The notion of a based U-module (M,B) with a U-compatible bar involution ψ
is formulated in [Lu94, Chapter 27]. We are interested in consideringM as aUı-module
by restriction, with a new bar involution ψı := Υ ◦ ψ (see Proposition 5.1) compatible
with the bar map ψı on Uı. Theorem D implies that ψı preserves the A-form AM of
the module M .

Theorem E (Theorem 5.7). The based U-module (M,B) admits a ψı-invariant basis
{bı|b ∈ B}, whose transition matrix with respect to the basis B is uni-triangular with
off-diagonal entries in q−1Z[q−1]. (We call {bı|b ∈ B} the ı-canonical basis of M .)

By the fundamental work of Lusztig and Kashiwara [Lu90, Ka91], every finite-
dimensional simple U-module admits a canonical basis and hence is a based module.
Similarly, by [Lu92], any tensor product of several finite-dimensional simple modules
(over U of finite type) with its canonical basis is a based module. Hence we obtain the
following corollary to Theorem E.

Corollary F (Theorems 5.10 and 5.11). Finite-dimensional simple U-modules and
their tensor products admit ı-canonical bases.

For type AIII/AIV with I• = ∅, Theorem E and Corollary F were established in
[BW13]. The ı-canonical bases in V⊗m ⊗ V∗⊗n, where V is the natural representation
of U, were used to define the Kazhdan-Lusztig polynomials for Lie superalgebras osp
in [BW13, Bao17].

1.4.5. In contrast to U, the ıquantum group Uı does not admit obvious triangular
decomposition. So the familiar approach toward canonical bases of quantum groups,
starting with U− , is not available in the QSP setting. Besides, there is no obvious
integral A-form of Uı in general.

We study the modified form U̇ı of Uı, similar to the modified form U̇ of U. The
bar involution ψı on Uı extends to a bar involution, again denoted by ψı, on U̇ı. Even
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though U̇ı is not a subalgebra of U̇, we can still view U̇ as a (left) U̇ı-module naturally.

We define AU̇
ı as the maximal A-subalgebra of U̇ı that preserves the integral form AU̇

through the natural action. It is not clear at all from the definition but will be proved
in the end that AU̇

ı is a free A-module.
Recall [Lu94, Chapter 25] Lusztig’s construction of canonical basis on U̇ relies es-

sentially on a projective system of based modules of the form ωL(λ+ ν)⊗L(µ+ ν), for
λ, µ, ν ∈ X+ as ν varies. We shall formulate a generalization of such projective systems
in the QSP setting.

We denote by P the parabolic subalgebra of U associated with I• which contains U−,
and by Ṗ the modified form of P. The intersection of the canonical basis on U̇ with
Ṗ forms the canonical basis of Ṗ; cf. [Ka94]. We establish a Q(q)-linear isomorphism

U̇ı1λ
∼= Ṗ1λ (where λ is an ı-weight associated to λ; see §3.1), which allows one to

regard Ṗ1λ as an associated graded of U̇ı1λ.
Denote by ηλ and ηw•λ the highest weight vector and the unique canonical basis

element of weight w•λ in a finite-dimensional simple module L(λ), respectively. For
λ, µ ∈ X+, consider the U-submodule generated by ηw•λ ⊗ ηµ in the tensor product
U-module L(λ) ⊗ L(µ) (which can be shown is the same as Uı- and P-submodule
generated by ηw•λ ⊗ ηµ):

Lı(λ, µ) = U(ηw•λ ⊗ ηµ) = P(ηw•λ ⊗ ηµ) = Uı(ηw•λ ⊗ ηµ).

Recall τ is the Dynkin diagram involution for a Satake diagram and we set ντ = τ(ν).
The significance of the modules Lı(λ, µ) is that

(1.1) Ṗ1w•λ+µ
∼= U̇ı1w•λ+µ

∼= lim
←−
ν

Lı(λ+ ντ , µ + ν),

where the inverse limit is understood as ν 7→ ∞.
One observes that Lı(λ, µ) is a based U-module. Kashiwara [Ka94] further estab-

lished the compatibility between the canonical basis on U̇ with the canonical basis
on Lı(λ, µ) under the obvious action, which allows a uniform parametrization of the
canonical, and hence the ı-canonical, basis on Lı(λ, µ).

Toward the construction of the universal K-matrix K for general QSP (which is
an analog of Drinfeld’s universal R-matrix for U), a Uı-module isomorphism K′ was
defined in [BK15]. (In cases when I• = ∅ this was constructed by the authors, as it
is a straightforward generalization of the construction of an isomorphism T in type
AIII/AIV in [BW13].) Even though the setting for [BK15] is mostly over a larger field

K(q1/d), some flexibility in constructing K′ allows one to choose a version, denoted by
T in §4.5, which is defined over the field Q(q). Here we keep the notation T, since this
paper follows closely [BW13]. With the help of T, we construct in Proposition 6.12 a
unique Uı-homomorphism (for ν ∈ X+)

π = πλ,µ,ν : Lı(λ+ ντ , µ + ν) −→ Lı(λ, µ), π(η•λ+ντ ⊗ ηµ+ν) = η•λ ⊗ ηµ.

Hence we have constructed a projective system of Uı-modules {Lı(λ+ντ , µ+ν)}ν∈X+ .
Lusztig’s original construction is recovered in the degenerate case when I = I• and
Uı = U.
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However in contrast to Lusztig’s results in the quantum group setting we cannot claim
the strong form of compatibility of ı-canonical bases in the sense that the projection
πλ,µ,ν is a based Uı-module map. An interesting new phenomenon has already been
observed in [BW13, §4.2] for QSP (where two ı-canonical basis elements can be mapped
to the same nonzero ı-canonical basis element).

In this paper we prove an asymptotic compatibility of ı-canonical bases in the projec-
tive system, that is, ı-canonical basis elements are mapped to ı-canonical basis elements
with the same labels (thanks to [Ka94]) through the projection πλ,µ,ν when ν → ∞.

Together with (1.1), this suffices to construct the ı-canonical basis on U̇ı1w•λ+µ. Ac-

tually, the ı-canonical basis of U̇ı1w•λ+µ is parameterized by the canonical basis of

Ṗ1w•λ+µ.

Theorem G (Theorem 6.17, Corollary 6.19). The algebra U̇ı admits a unique ı-

canonical basis Ḃı, which is asymptotically compatible with the ı-canonical basis on
Lı(λ, µ), for λ, µ ∈ X+. Moreover, the basis Ḃı is ψı-invariant, and AU̇

ı is a free

A-module with basis Ḃı.

1.4.6. Bilinear forms. Recall there is a non-degenerate symmetric bilinear form [Ka91,
Lu94] on each finite-dimensional simple module L(λ) defined via the anti-involution ℘
on U, with respect to which the canonical basis is almost orthonormal. It follows by
Corollary F and Lusztig’s results [Lu94, IV] that the ı-canonical basis on L(λ)⊗ L(µ)
is almost orthonormal with respect to the tensor product bilinear form (·, ·)λ,µ. We
prove in Lemma 6.24 that the bilinear form (·, ·)λ+ντ ,µ+ν converges as ν goes to ∞
through the projective system {Lı(λ + ντ , µ + ν)}ν∈X+ , and hence the limit defines a

symmetric bilinear form (·, ·) on U̇ı; see Definition 6.25. This form is compatible with
the anti-involution ℘ on Uı established in Proposition B; see Corollary 6.26.

The following theorem is a generalization of a similar characterization of the signed
canonical basis for modified quantum groups [Lu94, Chapter 26].

Theorem H (Theorems 6.27 and 6.28). The ı-canonical basis Ḃı is almost orthonor-

mal with respect to the symmetric bilinear form (·, ·) on U̇ı. Moreover, the signed

ı-canonical basis (−Ḃı)∪ Ḃı is characterized by the almost orthonormality, integrality,
and ψı-invariance.

1.5. Strategy of proofs. Recall Uq(sl2) plays a fundamental role in the crystal and
canonical basis theory of Lusztig and Kashiwara. To study the general quantum sym-
metric pairs we need to study first in depth the quantum symmetric pair of real rank
one (also cf. [Le04, Section 4]). There are 8 different types of real rank one QSP; see
Table 1. We formulate a notion of Levi subalgebras of Uı (which are ıquantum groups
by themselves). In particular, a general ıquantum group is generated by its Levi sub-
algebras of real and compact rank one. (Here a Levi subalgebra of compact rank one
is a copy of Uq(sl2) associated to any i ∈ I•.)

Note that for QSP of real rank one, U+(w0w•) is a relatively small subspace of U+.
Proposition C makes it feasible for us to prove Theorem D for QSP of real rank one
through brute force case-by-case computation. Actually we essentially obtain inductive
formulas for Υ in the real rank one cases; see Appendix A.
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The proofs of some main theorems are proceeded in the following steps:

(1) prove Theorem D for QSP of real rank one via case-by-case computations;
(2) prove Theorem E and then Theorem G for QSP of real rank one;
(3) prove Theorem D for QSP of arbitrary finite type using Theorem E and The-

orem G for QSP of real rank one;
(4) prove Theorem E and then Theorem G for QSP of arbitrary finite type;
(5) prove Theorem H for QSP of arbitrary finite type.

1.6. The organization. The paper is organized as follows. In Section 2, we review
various basic constructions for the quantum group U. We study the based submodule
Lı(λ, µ) of the tensor product L(λ) ⊗ L(µ) and the parabolic subalgebra P of U. We

establish the compatibility between the canonical basis on the modified form Ṗ and the
canonical basis on Lı(λ, µ).

In Section 3, we introduce the ı-root datum associated with a Satake diagram and
define the corresponding coideal Q(q)-subalgebra Uı of U with parameters. We also

define the modified form U̇ı and an A-subalgebra AU̇
ı.

In Section 4, we prove the braid group operators T
′′
w,e for w ∈ WI• and the anti-

involution ℘ on U restrict to automorphisms and an anti-involution, respectively, of
Uı. We show that Υ lies in (the completion of) the subspace U+(w0w•).

In Section 5, we prove the integrality of the intertwiner Υ. The long computational
proof for real rank one is given in Appendix A. We then establish the ı-canonical
bases on based U-modules. We comment on the validity of several constructions for
quantum symmetric pairs of Kac-Moody type. We plan to return in a future work to
the construction of ı-canonical bases arising from QSP of Kac-Moody type.

In Section 6, we construct the projective system of Uı-modules {Lı(λ + ντ , µ +
ν)}ν∈X+ , prove the ı-canonical basis elements stabilize when ν → ∞, and construct

the canonical basis on U̇ı . As a consequence, we show that AU̇
ı is generated by

the canonical basis elements of its real and compact rank one subalgebras. We also
construct a non-degenerate symmetric bilinear form on U̇ı, with respect to which the
signed canonical basis is shown to be almost orthonormal.
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2. Quantum groups and canonical bases

In this preliminary section, we review the basics and set up notations for quantum
groups and their modified forms, braid group actions, and canonical bases. We follow
closely the book of Lusztig [Lu94]. We also review the less familiar construction of
parabolic subalgebras and their canonical bases, following [Ka94]. Theorem 2.6 is new
in this generality.

2.1. The algebras f and U. Let (Y,X, 〈·, ·〉, · · · ) be a root datum of finite type (I, ·)
[Lu94, 1.1.1, 2.2.1]. We have a symmetric bilinear form ν, ν ′ 7→ ν · ν ′ on Z[I]. For
µ =

∑
i∈I µii ∈ Z[I], we let ht(µ) =

∑
i∈I µi. We have an embedding I ⊂ X (i 7→ i′), an

embedding I ⊂ Y (i 7→ i) and a perfect pairing 〈·, ·〉 : Y ×X → Z such that 〈i, j′〉 = 2i·j
i·i ,

for i, j ∈ I. The matrix (〈i, j′〉) = (aij) is the Cartan matrix. We define a partial order
≤ on the weight lattice X as follows: for λ, λ′ ∈ X,

(2.1) λ ≤ λ′ if and only if λ′ − λ ∈ N[I].

Let W be the corresponding Weyl group generated by the simple reflections si, for
i ∈ I. It naturally acts on Y and X. Let R∨ ⊂ Y be the set of coroots. We denote by
ρ∨ ∈ Y the half sum of all positive coroots. Let R ⊂ X be the set of roots. We denote
by ρ ∈ X the half sum of all positive roots. We denote the longest element of W by
w0.

Let q be an indeterminate. For any i ∈ I, we set qi = q
i·i
2 . Consider a free Q(q)-

algebra ′f generated by θi for i ∈ I associated with the Cartan datum of type (I, ·). As
a Q(q)-vector space, ′f has a weight space decomposition as ′f =

⊕
µ∈N[I]

′fµ, where θi
has weight i for all i ∈ I. For any x ∈ ′fµ, we set |x| = µ.

For each i ∈ I, we define ri, ir :
′f → ′f to be the unique Q(q)-linear maps such that

ri(1) = 0, ri(θj) = δij, ri(xx
′) = xri(x

′) + qi·µ
′

ri(x)x
′,

ir(1) = 0, ir(θj) = δij , ir(xx
′) = qi·µx ir(x

′) + ir(x)x
′,

(2.2)

for all x ∈ ′fµ and x′ ∈ ′fµ′ .
Let (·, ·) be the symmetric bilinear form on ′f defined in [Lu94, 1.2.3]. Let I be the

radical of the symmetric bilinear form (·, ·) on ′f . For i ∈ I, n ∈ Z and s ∈ N, we define

[n]i =
qni − q−ni

qi − q−1i

and [s]!i =

s∏

j=1

[j]i.

We shall also use the notation
[
n
s

]

i

=
[n]!i

[s]!i[n− s]!i
, for 0 ≤ s ≤ n.

It is known [Lu94] that I is generated by the quantum Serre relators S(θi, θj), for
i 6= j ∈ I, where

(2.3) S(θi, θj) =

1−aij∑

s=0

(−1)s
[
1− aij
s

]

i

θsi θjθ
1−aij−s
i .
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Let f = ′f/I. We have rℓ
(
S(θi, θj)

)
= ℓr

(
S(θi, θj)

)
= 0, for all ℓ, i, j ∈ I (i 6= j). Hence

rℓ and ℓr descend to well-defined Q(q)-linear maps on f .

We introduce the divided power θ
(a)
i = θai /[a]

!
i for a ≥ 0. Let A = Z[q, q−1]. Let Af

be the A-subalgebra of f generated by θ
(a)
i for various a ≥ 0 and i ∈ I.

Let U be the quantum group associated with the root datum (Y,X, 〈·, ·〉, . . . ) of type
(I, ·). The quantum group U is the associative Q(q)-algebra generated by Ei, Fi for
i ∈ I and Kµ for µ ∈ Y , subject to the following relations:

K0 = 1, KµKµ′ = Kµ+µ′ , for all µ, µ′ ∈ Y,

KµEj = q〈µ,j
′〉EjKµ, KµFj = q−〈µ,j

′〉FjKµ,

EiFj − FjEi = δi,j
K̃i − K̃−i

qi − q−1i

,

S(Fi, Fj) = S(Ei, Ej) = 0, for all i 6= j ∈ I,

where K̃±i = K± i·i
2
i and S(Ei, Ej) are defined as in (2.3).

LetU+, U0 and U− be the Q(q)-subalgebra of U generated by Ei(i ∈ I), Kµ(µ ∈ Y ),
and Fi(i ∈ I) respectively. We identify f ∼= U− by matching the generators θi with Fi.
This identification induces a bilinear form (·, ·) on U− and Q(q)-linear maps ri, ir (i ∈ I)
on U−. Under this identification, we let U−−µ be the image of fµ. Similarly we have

f ∼= U+ by identifying θi with Ei. We let AU
− (respectively, AU

+) denote the image

of Af under this isomorphism, which is generated by all divided powers F
(a)
i = F a

i /[a]
!
i

(respectively, E
(a)
i = Ea

i /[a]
!
i). The coproduct ∆ : U → U⊗U is defined as follows (for

i ∈ I, µ ∈ Y ):

(2.4) ∆(Ei) = Ei ⊗ 1 + K̃i ⊗Ei, ∆(Fi) = 1⊗ Fi + Fi ⊗ K̃−i, ∆(Kµ) = Kµ ⊗Kµ.

The following proposition follows by checking the generating relations, which can also
be found in [Lu94, 3.1.3,. 3.1.12, 19.1.1].

Proposition 2.1.

(1) There is an involution ω of the Q(q)-algebra U such that ω(Ei) = Fi, ω(Fi) =
Ei, and ω(Kµ) = K−µ for all i ∈ I and µ ∈ Y .

(2) There is an anti-involution ℘ of the Q(q)-algebra U such that ℘(Ei) = q−1i FiK̃i,

℘(Fi) = q−1i EiK̃
−1
i and ℘(Kµ) = Kµ for all i ∈ I and µ ∈ Y .

(3) There is an anti-involution σ of the Q(q)-algebra U such that σ(Ei) = Ei,
σ(Fi) = Fi and σ(Kµ) = K−µ for all i ∈ I and µ ∈ Y .

(4) There is a bar involution of the Q-algebra U such that q 7→ q−1, Ei = Ei,
F i = Fi, and Kµ = K−µ for all i ∈ I and µ ∈ Y . (Sometimes we denote the
bar involution on U by ψ.)

2.2. Braid group actions and PBW basis. Recall from [Lu94, 5.2.1] that for each
i ∈ I, e ∈ {±1}, and each finite-dimensional U-moduleM , linear isomorphisms T′i,e and
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T
′′
i,e on M are defined: for λ ∈ X and m ∈Mλ, we set

T
′′
i,e(m) =

∑

a,b,c≥0;−a+b−c=〈i,λ〉

(−1)bq
e(b−ac)
i E

(a)
i F

(b)
i E

(c)
i m,

T
′
i,e(m) =

∑

a,b,c≥0;a−b+c=〈i,λ〉

(−1)bq
e(b−ac)
i F

(a)
i E

(b)
i F

(c)
i m.

These T
′′
i,e and T

′
i,e induce automorphisms of U in the same notations such that, for

all u ∈ U,m ∈ M , we have T
′′
i,e(um) = T

′′
i,e(u)T

′′
i,e(m), and T

′
i,e(um) = T

′
i,e(u)T

′
i,e(m).

More precisely, we have the following formulas for the actions the automorphisms T′′i,e,

T
′
i,e : U → U on generators (i, j ∈ I, µ ∈ Y ):

T
′
i,e(Ei) = −K̃eiFi, T

′
i,e(Fi) = −EiK̃−ei, T

′
i,e(Kµ) = Ksi(µ);

T
′
i,e(Ej) =

∑

r+s=−〈i,j′〉

(−1)rqeri E
(r)
i EjE

(s)
i for j 6= i;

T
′
i,e(Fj) =

∑

r+s=−〈i,j′〉

(−1)rq−eri F
(s)
i FjF

(r)
i for j 6= i;

T
′′
i,−e(Ei) = −FiK̃−ei, T

′′
i,−e(Fi) = −K̃eiEi, T

′′
i,−e(Kµ) = Ksi(µ);

T
′′
i,−e(Ej) =

∑

r+s=−〈i,j′〉

(−1)rqeri E
(s)
i EjE

(r)
i for j 6= i;

T
′′
i,−e(Fj) =

∑

r+s=−〈i,j′〉

(−1)rq−eri F
(r)
i FjF

(s)
i for j 6= i.

(2.5)

As automorphisms on U and as Q(q)-linear isomorphisms on M , these T
′′
i,e and T

′
i,e

satisfy the braid group relations ([Lu94, Theorem 39.4.3]) of type (I, ·). Hence for
each w ∈ W , both T

′′
w,e and T

′
w,e can be defined independent of the choices of reduced

expressions of w. The following proposition can be found in [Lu94, 37.2.4].

Proposition 2.2. The following relations among T
′′
i,e and T

′
i,e hold (for i ∈ I, e = ±1):

(1) ωT′i,eω = T
′′
i,e and σT′i,eσ = T

′′
i,−e, as automorphisms on U,

(2) T
′
i,e(u) = T

′
i,−e(u) and T

′′
i,e(u) = T

′′
i,−e(u), for u ∈ U.

We shall focus on the automorphisms T′′i,+1 and T
′′
w,+1. Hence to simplify the notation,

throughout the paper we shall often write

Ti = T
′′
i,+1, and Tw = T

′′
w,+1.

2.3. Canonical bases. Let M(λ) be the Verma module of U with highest weight
λ ∈ X and with a highest weight vector denoted by η or ηλ. We define a lowest weight
U-module ωM(λ), which has the same underlying vector space as M(λ) but with the
action twisted by the involution ω given in Proposition 2.1. When considering ηλ as a
vector in ωM(λ), we shall denote it by ξ or ξ−λ.

Let

X+ =
{
λ ∈ X | 〈i, λ〉 ∈ N,∀i ∈ I

}
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be the set of dominant integral weights. By λ ≫ 0 we shall mean that the integers
〈i, λ〉 for all i are sufficiently large (in particular, we have λ ∈ X+). The Verma module
M(λ) associated to λ ∈ X+ has a unique finite-dimensional simple quotient U-module,
denoted by L(λ). Similarly we define the U-module ωL(λ) of lowest weight −λ. We
have ωL(−w0λ) = L(λ). For λ ∈ X+, we let AL(λ) = AU

−η and ω
A
L(λ) = AU

+ξ be
the A-submodules of L(λ) and ωL(λ), respectively.

In [Lu90] and [Ka91], the canonical basis B of Af is constructed. Recall that we can
identify f with bothU− andU+. For any element b ∈ B, when considered as an element
in U− or U+ under such identifications, we shall denote it by b− or b+, respectively.
Subsets B(λ) of B are also constructed for each λ ∈ X+ such that b 7→ b−ηλ is a
bijection from B(λ) to the set of canonical basis of AL(λ); similarly {b+ξ−λ | b ∈ B(λ)}
gives the canonical basis of ωL(λ). We denote by L(λ) the Z[q−1]-submodule of L(λ)
spanned by {b−ηλ | b ∈ B(λ)}. Similarly we denote by ωL(λ) the Z[q−1]-submodule of
ωL(λ) spanned by {b+ξ−λ | b ∈ B(λ)}.

Recall [Lu94, §4.1] the quasi-R-matrix Θ :=
∑

µ∈N[I]Θµ is defined in a suitable

completion of U− ⊗ U+. For any finite-dimensional U-modules M and M ′, Θ is a
well-defined operator on M ⊗M ′, such that

(2.6) ∆(u)Θ(m⊗m′) = Θ∆(u)(m⊗m′) and ΘΘ(m⊗m′) = m⊗m′,

for all m ∈M , m′ ∈M ′, and u ∈ U.
Lusztig developed the theory of based U-modules in [Lu94, Chapter 27]. The finite-

dimensional simple U-modules L(λ) and ωL(λ) are both based U-modules. Given any
based U-modules M and M ′, their tensor product is also a based U-module with the
bar involution ψ = Θ ◦ (ψ ⊗ ψ). In particular, the tensor product L(λ) ⊗ L(µ) =
ωL(−w0λ)⊗ L(µ) is a based U-module for λ, µ ∈ X+ with basis B(λ, µ). Elements in
B(λ, µ) are ψ-invariant and of the form

b−1 ηλ♦b
−
2 ηµ ∈ b−1 ηλ ⊗ b−2 ηµ +

∑

|b′
1
|≥|b1|,|b′2|≤|b2|

q−1Z[q−1]b′−1 ηλ ⊗ b′−2 ηµ, b1 ∈ B(λ), b2 ∈ B(µ).

For convenience, we shall declare that b−1 ηλ♦b
−
2 ηµ = 0 whenever either b1 6∈ B(λ) or

b2 6∈ B(µ), or equivalently whenever either b−1 ηλ = 0 or b−2 ηµ = 0 for (b1, b2) ∈ B×B.
For λ, µ ∈ X+, we denote by Lλ,µ the Z[q−1]-submodule of L(λ)⊗L(µ) spanned by

b−1 ηλ ⊗ b−2 ηµ for all (b1, b2) ∈ B(λ) ×B(µ). Let ALλ,µ = A⊗Z[q−1] Lλ,µ.
Recall [Lu94, Chapter 23] that the modified (or idempotented) form

U̇ =
⊕

λ′,λ′′∈X

λ′Uλ′′

is naturally an associative algebra (without unit) where 1λ1λ′ = δλ,λ′1λ. The algebra

U̇ admits a (U,U)-bimodule structure as well. Moreover, any weight U-module (i.e.,
a U-module with a direct sum decomposition into weight spaces, cf. [Lu94, §3.4.1])
can naturally be regarded as a U̇-module by [Lu94, §23.1.4]. Denote by AU̇ the A-

subalgebra of U̇ generated by AU
−1λAU

+ for various λ ∈ X.
For any w ∈W and λ ∈ X+, we denote by

ηwλ = ξww0(w0λ) ∈ L(λ) = ωL(−w0λ),
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the unique canonical basis element of weight wλ. We shall use later (in Proposition 6.12)
the following slight generalization of [Lu94, 27.1.7].

Lemma 2.3. There exists a unique homomorphism of U-modules

χ : L(λ+ µ) −→ L(λ)⊗ L(µ)

such that χ(ηw(λ+µ)) = ηwλ ⊗ ηwµ for any (or all) w ∈W .

Proof. We define χ : L(λ+µ) −→ L(λ)⊗L(µ) to be the homomorphism of U-modules
such that χ(ηλ+µ) = ηλ⊗ηµ. Thanks to [Lu94, 27.1.7], χ is an homomorphism of based
modules. For any w ∈W , ηwλ⊗ηwµ is the unique canonical basis element in L(λ)⊗L(µ)
of weight w(λ+ µ), since the weight subspace

(
L(λ)⊗L(µ)

)
w(λ+µ)

is one-dimensional.

The uniqueness follows from the fact that ηw(λ+µ) is a cyclic vector of the U-module
L(λ+ µ). �

We collect the following results from [Lu94, Chapter 25] in Propositions 2.4-2.5
below. A slight improvement here is that we can use the same χ uniformly thanks to
Lemma 2.3.

Proposition 2.4. Let λ, µ ∈ X+. The U-module homomorphism χ : L(λ + µ) →
L(λ)⊗ L(µ), ηλ+µ 7→ ηλ ⊗ ηµ, satisfies the following properties:

(1) Let b ∈ B(λ+µ). We have χ(b−ηλ+µ) =
∑

b1,b2
f(b; b1, b2)b

−
1 ηλ⊗b

−
2 ηµ, summed

over b1 ∈ B(λ), b2 ∈ B(µ), with f(b; b1, b2) ∈ Z[q−1]. If b−ηµ 6= 0, then
f(b; 1, b) = 1 and f(b; 1, b2) = 0 for any b2 6= b. If b−ηµ = 0, then f(b; 1, b2) = 0
for any b2;

(2) Let b ∈ B(−w0(λ + µ)). We have χ(b+ξw0(λ+µ)) =
∑

b1,b2
f(b; b1, b2)b

+
2 ξw0λ ⊗

b+1 ξw0µ, summed over b1 ∈ B(−w0λ), b2 ∈ B(−w0µ), with f(b; b1, b2) ∈ Z[q−1].
If b+ξw0λ 6= 0, then f(b; 1, b) = 1 and f(b; 1, b2) = 0 for any b2 6= b. If b+ξw0λ =
0, then f(b; 1, b2) = 0 for any b2.

Proposition 2.5. Let ζ ∈ X and b1, b2 ∈ B.

(1) There exists a unique element b1♦ζb2 ∈ AU̇1ζ such that

b1♦ζb2(ξw0λ ⊗ ηµ) = (b+1 ξw0λ♦b
−
2 ηµ)

for any λ, µ ∈ X+ such that b1 ∈ B(−w0λ), b2 ∈ B(µ) and w0λ+ µ = ζ.
(2) We have b1♦ζb2 = b1♦ζb2.

(3) The set Ḃ = {b1♦ζb2|ζ ∈ X, (b1, b2) ∈ B × B} forms a (canonical) Q(q)-basis

of U̇ and a A-basis of AU̇.

2.4. A based submodule. The following is a generalization of Kashiwara’s result in
[Ka94, Lemma 8.2.1].

Theorem 2.6. Let w ∈W , and µ, λ ∈ X+. For any b ∈ Ḃ, we have

b(ηwλ ⊗ ηµ) ∈ B(λ, µ) ∪ {0}.

Proof. We prove by induction on kw = ℓ(w0)− ℓ(w) = ℓ(ww0). When kw = 0, we have
w = w0, this is Lusztig’s theorem (see Proposition 2.5).
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Assume kw = k > 0, and let ww0 = si1si2 · · · sik be a reduced expression. We have

ηwλ ⊗ ηµ = E
(a1)
i1

E
(a2)
i2

· · ·E
(ak)
ik

(ηw0λ ⊗ ηµ),

for some ai ≥ 0 (uniquely determined by λ and w); moreover, we have Ei1(ηwλ⊗ηµ) = 0.
We define

IN =
∑

i∈I

U̇EN
i +

∑

i∈I

U̇FN
i , for N ∈ N.

Note that for x ∈ Lw•
(λ, µ), we have IN (x) = 0 for N ≫ 0. Then adapting [Ka94,

Lemma 8.2.1] to our setting, we have the following two possibilities (depending on ε∗i1(b)
therein)

b ∈ U̇Ei1 or bE
(a1)
i1

∈ b′ + U̇E
(a1+1)
i1

+ IN , for any N and some b′ ∈ Ḃ.

If b ∈ U̇Ei1 , we clearly have b(ηwλ ⊗ ηµ) = 0. If bE
(a1)
i1

∈ b′ + U̇E
(a1+1)
i1

+ IN , then
we have (by taking N ≫ 0)

b(ηwλ ⊗ ηµ) = b′E
(a2)
i2

· · ·E
(ak)
ik

(ηw0λ ⊗ ηµ) = b′(ηsi1w ⊗ ηµ).

Since ℓ(si1ww0) = k−1, the inductive assumption gives us b′(ηsi1w⊗ηµ) ∈ B(λ, µ)∪{0}.
This proves the theorem. �

LetWI• = 〈si ∈W |i ∈ I•〉 be the Weyl group associated with a subset I• ⊂ I. Let w•
be the longest element inWI• . For λ, µ ∈ X+, we introduce the following U-submodule
of L(λ)⊗ L(µ):

(2.7) Lı(λ, µ) = U(ηw•λ ⊗ ηµ).

In case when I• = I, we have Lı(λ, µ) = ωL(λ)⊗ L(µ).

Corollary 2.7. Let I• ⊂ I and λ, µ ∈ X+. Then the U-submodule Lı(λ, µ) is a based
submodule of L(λ)⊗ L(µ) with canonical basis B(λ, µ) ∩ Lı(λ, µ).

Remark 2.8. The fact that Lı(λ, µ) is a based submodule of L(λ) ⊗ L(µ) can also be
proved by observing that

Lı(λ, µ) =
(
L(λ)⊗ L(µ)

)
[≥ w•(λ+ µ)]

in the spirit of [Lu94, §27.1.2].

We denote by Lı(λ, µ) the Z[q−1]-lattice of Lı(λ, µ) spanned by B(λ, µ) ∩ Lı(λ, µ).

2.5. The parabolic subalgebra P. For any I• ⊂ I, let UI• be the Q(q)-subalgebra
of U generated by Fi(i ∈ I•), Ei(i ∈ I•) and Ki(i ∈ I•). Let BI• be the canonical
basis of fI• (here fI• is simply a version of f associated to I•). Then we have natural
identifications U−I•

∼= U+
I•

∼= fI• . As usual, for b ∈ BI• , we shall denote by b− the

corresponding element in U−I• and denote by b+ the corresponding element in U+
I•

under such identifications.
Let P = PI• be the Q(q)-subalgebra of U generated by UI• and U−. For λ ∈ X+, we

denote by ωL•(λ) the P-submodule of ωL(λ) generated by ξ−λ. Clearly
ωL•(λ) restricts

to a simple UI• -module with lowest weight −λ, and ωL•(λ) admits a canonical basis
BI•(λ) = {b ∈ B(λ)|b+ξ−λ 6= 0} = BI• ∩B(λ).
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We introduce the following subalgebra of U̇:

Ṗ =
⊕

λ∈X

P1λ.

We further set AṖ = Ṗ ∩ AU̇.
Recall the canonical basis element b1♦ζb2 ∈ Ḃ from Proposition 2.5.

Proposition 2.9. [Ka94, Theorem 3.2.1] The set Ṗ ∩ Ḃ forms a Q(q)-basis of Ṗ and

an A-basis of AṖ. Moreover, we have Ṗ ∩ Ḃ = {b1♦ζb2|(b1, b2) ∈ BI• ×B, ζ ∈ X}.

We shall denote

ḂP = Ṗ ∩ Ḃ =
{
b1♦ζb2|(b1, b2) ∈ BI• ×B, ζ ∈ X

}

and refer to it as the canonical basis of Ṗ. It follows by construction that

ḂP1ζ
:= ḂP1ζ = {b1♦ζb2|(b1, b2) ∈ BI• ×B}

forms a (canonical) basis of P1ζ , for ζ ∈ X.
Let ζ ′, ζ ∈ X be such that 〈i, ζ〉 = 〈i, ζ ′〉 for all i ∈ I•. We have the following

isomorphism of (left) P-modules:

(2.8) p = pζ,ζ′ : P1ζ −→ P1ζ′

such that p(1ζ) = 1ζ′ . The following proposition will be used later on.

Proposition 2.10. Let ζ ′, ζ ∈ X such that 〈i, ζ〉 = 〈i, ζ ′〉 for all i ∈ I•. Then the
isomorphism p : P1ζ → P1ζ′ in (2.8) preserves the canonical bases. More precisely,
for any (b1, b2) ∈ BI• ×B, we have p(b1♦ζb2) = b1♦ζ′b2.

Proof. Let µ, λ ∈ X+ be such that µ − λ = ζ. Let λ′ = λ + ζ − ζ ′. Clearly by taking
λ≫ 0, we can have λ′ ∈ X+. We shall assume λ≫ 0 and λ′ ∈ X+ below.

We have a natural isomorphism of P-modules γ : ωL•(λ)
∼=
−→ ωL•(λ′), which maps

the canonical basis of ωL•(λ) to the canonical basis of ωL•(λ′). Let us consider the
induced isomorphism γ ⊗ id on the tensor product:

ωL•(λ)⊗ L(µ)
� _

��

γ⊗id
// ωL•(λ′)⊗ L(µ)

� _

��

ωL(λ)⊗ L(µ) ωL(λ′)⊗ L(µ)

Notice that the bar involution, ψ̃, on ωL(λ)⊗L(µ) is defined as ψ̃ = Θ◦ (ψ⊗ψ), where

Θ =
∑

µ∈N[I]Θ
−
µ ⊗Θ+

µ . The subspace
ωL•(λ)⊗L(µ) is stable under the bar involution ψ̃

and clearly admits a canonical basis B(−w0λ, µ)∩(ωL•(λ)⊗L(µ)). Similarly ωL•(λ′)⊗
L(µ) admits a canonical basis B(−w0λ

′, µ) ∩ (ωL•(λ′)⊗ L(µ)).

The actions of ψ̃ on ωL•(λ)⊗L(µ) and ωL•(λ′)⊗L(µ) are given by the composition
(
∑

µ∈N[I•]
Θ−µ ⊗ Θ+

µ ) ◦ (ψ ⊗ ψ). Note that γ ⊗ id intertwines the actions of ψ ⊗ ψ on
ωL•(λ)⊗ L(µ) and ωL•(λ′) ⊗ L(µ). The map γ ⊗ id also commutes with the operator∑

µ∈N[I•]
Θ−µ⊗Θ+

µ , since we have Θ
±
µ ∈ P for µ ∈ N[I•]. Hence the map γ⊗id intertwines

with the bar involutions ψ̃ on ωL•(λ) ⊗ L(µ) and ωL•(λ′) ⊗ L(µ). It follows by the
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uniqueness of canonical basis that γ⊗ id maps the canonical basis on ωL•(λ)⊗L(µ) to
the canonical basis on ωL•(λ′)⊗ L(µ).

The construction above works for all λ, µ ≫ 0 with µ − λ = ζ, and hence the
proposition follows from Lusztig’s construction of canonical basis on U̇ in [Lu94, The-
orem 25.2.1] as well as Proposition 2.9. �

3. Quantum symmetric pairs: definitions and first properties

In this section we formulate quantum symmetric pairs (U,Uı) over Q(q) and a
modified form of the algebra Uı. The quantum symmetric pairs of finite type are
constructed in terms of Satake diagrams, which specify a subset I• ⊂ I of black nodes
and a diagram involution. We introduce admissible subdiagrams of Satake diagrams
(of real rank one) and the corresponding Levi subalgebras of Uı (of real rank one). We
formulate a connection between Uı and the parabolic subalgebra of U associated to I•.

3.1. The ı-root datum. Let (Y,X, 〈·, ·〉, · · · ) be a root datum of type (I, ·). We call
a permutation τ of the set I an involution of the Cartan datum (I, ·) if τ2 = id and
τ(i) · τ(j) = i · j for i, j ∈ I. Note we allow τ = 1. We further assume that τ extends to
an involution on X and an involution on Y , respectively, such that the perfect bilinear
pairing is invariant under the involution τ . Such involutions τ on X and Y exist and
are unique for the simply connected or adjoint simple root datum.

For a subset I• ⊂ I, let WI• be the parabolic subgroup of W generated by simple
reflections si with i ∈ I•. Let w• be the longest element in WI• . Let R

∨
• denote the set

of coroots associated to the simple coroots I• →֒ Y , and let R• denote the set of roots
associated to the simple roots I• →֒ X. Let ρ∨• be the half sum of all positive coroots
in the set R∨• , and let ρ• be the half sum of all positive coroots in the set R•. We shall
write

(3.1) I◦ = I\I•.

We recall the following definition of an admissible pair (I•, τ) (cf. [Ko14, Defini-
tion 2.3]).

Definition 3.1. A pair (I•, τ) consisting of a subset I• ⊂ I and an involution τ of the
Cartan datum (I, ·) is called admissible if the following conditions are satisfied:

(1) τ(I•) = I•;
(2) The action of τ on I• coincides with the action of −w•;
(3) If j ∈ I◦ and τ(j) = j, then 〈ρ∨• , j

′〉 ∈ Z.

Note that

(3.2) θ = −w• ◦ τ

is an involution of X, as well as an involution of Y , thanks to τ ◦ w• ◦ τ = w•. (Note
our convention on θ in [BW13] differs by a sign from here.)

We introduce

Xı = X/X̆, where X̆ = {λ− θ(λ)|λ ∈ X},

Y ı = {µ ∈ Y
∣∣θ(µ) = µ}.

(3.3)
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We shall call Xı the ı-weight lattice (even though Xı is not always a lattice), and call
Y ı the ı-root lattice, respectively. For any λ ∈ X denote its image in Xı by λ. There
is a well-defined bilinear pairing (denoted by 〈·, ·〉 again, by abuse of notations)

〈·, ·〉 : Y ı ×Xı −→ Z

defined by 〈µ, λ〉 := 〈µ, λ〉, where λ ∈ X is any preimage of λ and µ ∈ Y ı.

3.2. Satake subdiagrams of real rank one. According to Kolb [Ko14], the admissi-
ble pairs of finite type (excluding the trivial case when I = I•) are in bijection with the
Satake diagrams [Ar62] arising from classification of real simple Lie algebras. (Beware
that there is a hidden involution on the black dots when the number of black nodes is
odd for type DI/DII.) These Satake diagrams, consist of black and white nodes with
arrows; the set of black nodes corresponds to I• and the involution τ is expressed in
terms of 2-sided arrows on white nodes. We reproduce from loc. cit. the Satake dia-
grams in Table 4 at the end of this paper for the reader’s convenience. For the rest of
this section, we consider root data (Y,X, 〈·, ·〉, . . .) of finite type (I, ·) and an admissible
pair (I•, τ). The number of τ -orbits of white nodes in a Satake diagram is called its
real rank.

Definition 3.2. Let D be a Satake diagram with a set I◦ of white nodes. Given a 〈τ〉-
orbit o of white nodes in D, the removal of all white nodes in I◦\o and their adjacent
edges in D produces a diagram Do. The connected subdiagram of Do containing o is
call a subdiagram of real rank one (associated to o).

By definition, subdiagrams of real rank one of a Satake diagram D are parametrized
by the 〈τ〉-orbits of white nodes of D.

Example 3.3. The Satake diagram of type EIII ◦ • • • ◦

◦
has 2 subdiagrams of

real rank one: ◦ • • • ◦ of type AIII, and • • •
◦

of type DI.

By inspection, there are eight types of local configurations of Satake diagrams of real
rank one as listed in Table 1. Note there are no black nodes and the two white nodes
are connected in the type AIV for n = 2, and so it differs from type AIII11.

In Table 2 (where SP stands for symmetric pairs), for each Satake diagram we list
the possible Satake subdiargrams of real rank one in the sense of Definition 3.2. For
several crucial arguments in this paper we shall reduce to the types of real rank one
and do case-by-case analysis.

In analogy with subdiagrams of real rank one, we call a single black node of a Satake
diagram a subdiagram of compact rank one.

Definition 3.4. An admissible subdiagram of a Satake diagram D is a full subdiagram
whose vertex set is the union of subdiagrams of compact rank one and subdiagrams of
real rank one of D.

(Hence there are two kinds of minimal admissible subdiagrams of a Satake diagram:
(i) subdiagrams of real rank one, and (ii) subdiagrams of compact rank one.)
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Table 1. Satake diagrams of symmetric pairs of real rank one

AI1
◦
1 AII3

• ◦ •
1 2 3

AIII11 ◦ ◦
1 2

AIV, n≥2 ◦ • • ◦
1 2 n

BII, n≥ 2
◦ • • •
1 2 n CII, n≥3 • ◦ • • •

1 2 n

DII, n≥4 ◦ • •
•

•1 2

n-1

n
FII

• • • ◦
1 2 3 4

Table 2. Subdiagrams of real rank one in Satake diagrams

SP Type AI AII AIII AIV BI BII
Local AI1 AII3 AI1, AIII11, AIV AIV AI1, BII BII

SP Type CI CII DI DII DIII EI
Local AI1 AII3, BII , CII AI1, AIII11, DII DII AI1, AII3 AI1

SP Type EII EIII EIV EV EVI EVII
Local AI1, AIII11 AI1, AIV DII AI1 AI1, AII3 AI1, DII

SP Type EVIII EIX FI FII G
Local AI1 AI1, DII AI1 FII AI1

3.3. The ıquantum group Uı over Q(q). The permutation τ of I induces an iso-
morphism of U, denoted also by τ , which sends Ei 7→ Eτi, Fi 7→ Fτi, and Kµ 7→ Kτµ.
Let

θ := Tw•
◦ τ ◦ ω

be an automorphism of U. (As it will not cause confusion, here we abuse notation to
use the same θ as in (3.2), which is actually a shadow of the current involution on the
(co)weight level.)

Definition 3.5. The algebra Uı, with parameters

(3.4) ςi ∈ ±qZ, κi ∈ Z[q, q−1], for i ∈ I◦,

is the Q(q)-subalgebra of U generated by the following elements:

Fi + ςiTw•
(Eτi)K̃

−1
i + κiK̃

−1
i (i ∈ I◦),

Kµ (µ ∈ Y ı), Fi (i ∈ I•), Ei (i ∈ I•).
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The parameters are required to satisfy Conditions (3.5)-(3.8):

κi = 0 unless τ(i) = i, 〈i, j′〉 = 0 ∀j ∈ I•,

and 〈k, i′〉 ∈ 2Z ∀k = τ(k) ∈ I◦ such that 〈k, j′〉 = 0 for all j ∈ I•;
(3.5)

κi = κi;(3.6)

ςi = ςτi if i · θ(i) = 0;(3.7)

ςi · ςτi = (−1)〈2ρ
∨

•
,i′〉q

−〈i,2ρ•+w•τi′〉
i .(3.8)

By definition, Uı contains UI• as a subalgebra. We have

∆ : Uı −→ Uı ⊗U,

that is, Uı is a (right) coideal subalgebra of U. The pair (U,Uı) is called a quantum
symmetric pair, as its q 7→ 1 limit is the classical symmetric pair (cf. [Ar62, OV] and
references therein). The algebra Uı on its own will be also referred to as the ıquantum
group.

Remark 3.6. The foundation of quantum symmetric pairs was established by G. Letzter
[Le02, Le03] and Kolb [Ko14] (also see [BK15]). We refer to these papers and the ref-
erences therein for more original motivations and historical remarks. In the literature,

the ıquantum group Uı was defined over some field K(q
1

d ) with d > 1 and a field K ⊃ Q

containing some roots of 1 of characteristic zero (see [BK15, Remark 2.3]). To develop
a theory of canonical basis, it is natural to formulate the algebra Uı over the field Q(q)
as we did in [BW13]; this is made possible by [BK15, Remark 5.2 and its preceding
paragraph, §5.4].

Remark 3.7. The precise relations between constraints for parameters for Uı in this
paper and in [BK15] are as follows. Our notations correspond to those in [BK15, §5]
in the following way: κi ↔ si, ςi ↔ −cis(τ(i)). Our Condition (3.5) is [BK15, (5.7)],
Condition (3.6) is [BK15, (5.15)], and Condition (3.7) is [BK15, (5.6)] where we use
[BK15, (5.2)]. In particular, our formulation does not use their parameters ci, s(τ(i))
separately.

Condition (3.8) (in the presence of (3.4)) implies (but is inequivalent to) [BK15,
(5.16)], if we take into account [BK15, (5.1)-(5.2), Remark 5.2]. More precisely, our
condition follows from theirs by imposing the additional condition that their ci (or our
ςi) is a monomial in q and hence ci = c−1i . Our stronger Condition (3.4) is needed

for the integral form of U̇ı and the validity of Proposition 4.6 below (Remark 4.7).
Lemma 3.10 below computes the values of the parameters ςi for i ∈ I◦ satisfying (3.4)
and (3.7)–(3.8).

We shall write

(3.9) Bi =

{
Fi + ςiTw•

(Eτi)K̃
−1
i + κiK̃

−1
i if i ∈ I◦;

Fi if i ∈ I•.
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As can be found in [Ko14, (7.3)], it follows by Definition 3.5 that, for i ∈ I• and
j ∈ I,

(3.10) EiBj −BjEi = δi,j
K̃i − K̃−i

qi − q−1i

.

Remark 3.8. A presentation of the algebra Uı with generators Bi(i ∈ I), Kµ (µ ∈ Y ı)
and Ei (i ∈ I•) has been obtained in [Le02, Ko14] (see [BK15a, Section 3.2]).

Let Uı− be the subalgebra of Uı generated by Bi for i ∈ I. Let Uı0 be the subalgebra
of Uı generated by Kµ (µ ∈ Y ı). Let Uı+ be the subalgebra of Uı generated by Ei for
i ∈ I•.

Remark 3.9. The following multiplication map is only surjective, but not an isomor-
phism:

m : Uı− ⊗Uı0 ⊗Uı+ −→ Uı.

(Note that Uı+ = U+
I•
.) It is possible to replace Uı− by certain subspace of Uı−, such

that the above map becomes an isomorphism following [Ko14, Proposition 6.1&6.2].

We call aUı-moduleM a weight Uı-module, ifM admits a direct sum decomposition
M = ⊕λ∈Xı

Mλ such that, for any µ ∈ Y ı, λ ∈ Xı, m ∈ Mλ, we have Kµm = q〈µ,λ〉m.
We shall only consider weight Uı-modules in this paper.

3.4. Parameters. By Remark 3.7, our parameters satisfy stronger constraints than
those in [BK15], and in next lemma we ensure the existence of solutions of ςi ∈ ±qZ

(i ∈ I◦) which satisfy Conditions (3.7)–(3.8). As these conditions are local, it suffices
to consider the Satake (sub)diagrams of real rank one in Table 3.

Lemma 3.10. The values of ςi for quantum symmetric pairs of real rank one are given
in Table 3.

Table 3. Values of ςi (i ∈ I◦) for quantum symmetric pairs of real rank one

AI1 AII3 AIII11 AIV, n≥2 BII, n≥ 2 CII, n≥3 DII, n≥4 FII

±q−11 ±q (3.11) (3.12) ±q2n−3 ±qn−1 ±qn−2 ±q5

Proof. We shall compute (−1)〈2ρ
∨

•
,i〉q
−〈i,2ρ•+w•τi〉
i in (3.8) case by case following Table 1

and the labeling therein. For i ∈ I, we sometimes use the notation αi (instead of i′)
for the corresponding element in I ⊂ X and use the notation α∨i (instead of i) for the
corresponding element in I ⊂ Y .

(AI1) We have (−1)〈2ρ
∨

•
,i〉q
−〈i,2ρ•+w•τi〉
i = q−21 . Then we can clearly take ς1 = ±q−11 .

(AII3) We have ρ∨• = 1
2α
∨
1 + 1

2α
∨
3 , ρ• = 1

2α1 + 1
2α3 and w•τ(α2) = α1 + α2 + α3.

Therefore we have 〈2ρ∨• , α2〉 = −2 and −〈α∨2 , 2ρ• + w•τα2〉 = 2. Hence (3.8)
becomes ς22 = q22 and we can take ς2 = ±q (by noting q2 = q).

(AIII11) Note τ(α1) = α2, q1 = q. Condition (3.7) applies in this case and gives us
ς1 = ς2. Also it follows by (3.8) that ς1ς2 = 1. Hence

(3.11) ς1 = ς2 = ±1.
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(AIV) Note τ(α1) = αn, q1 = q. We have 〈2ρ∨• , α1〉 = 〈α∨1 , 2ρ•〉 = 2 − n, and
〈α∨1 , w•αn〉 = −1. Condition (3.7) does not apply. It follows by (3.8) that
ς1ςn = (−1)nqn−1. Hence we can choose

(3.12) ς1 = (−1)aqb, ςn = (−1)n−aqn−1−b, for any a, b ∈ Z.

(BII) Let n ≥ 2. We have

ρ∨• =

n−1∑

i=2

(2n − i)(i− 1)

2
α∨i +

n(n− 1)

4
α∨n ,

ρ• =

n−1∑

i=2

(2n − i− 1)(i − 1)

2
αi +

(n− 1)2

2
αn,

w•τ(α1) = α1 + 2α2 + · · ·+ 2αn−1 + 2αn.

Therefore we have 〈2ρ∨• , α1〉 = −(2n − 2), −〈α∨1 , 2ρ• + w•τα1〉 = 2n − 3, and
(3.8) becomes ς21 = q2n−31 . Since q1 = q2, we can take ς1 = ±q2n−3.

(CII) Let n ≥ 3. We have

ρ∨• =
1

2
α∨1 +

n−1∑

i=3

(2n − i− 2)(i − 2)

2
α∨i +

(n− 2)2

2
α∨n ,

ρ• =
1

2
α1 +

n−1∑

i=3

(2n− i− 1)(i− 2)

2
αi +

(n− 1)(n − 2)

4
αn, ,

w•τ(α2) = α1 + α2 + 2α3 + · · · + 2αn−1 + 2αn.

Therefore we have 〈2ρ∨• , α2〉 = −2n + 4 and −〈α∨2 , 2ρ• + w•τα2〉 = 2n − 2. So

(3.8) becomes ς22 = q2n−22 = q2n−2, and we can take ς2 = ±qn−1.
(DII) Let n ≥ 4. We have

ρ∨• = (n− 2)α∨2 + · · ·+
(n− 1)(n − 2)

2
α∨n−2 +

n(n− 1)

4
α∨n−1 +

n(n− 1)

4
α∨n ,

ρ• = (n− 2)α2 + · · · +
(n− 1)(n − 2)

2
αn−2 +

n(n− 1)

4
αn−1 +

n(n− 1)

4
αn,

w•τ(α1) = α1 + 2α2 + · · · 2αn−2 + αn−1 + αn.

Therefore we have 〈2ρ∨• , α1〉 = −(n− 2) and −〈α∨1 , 2ρ• + w•τα1〉 = 2n − 4. So
(3.8) becomes ς21 = q2n−4, and we can take ς1 = ±qn−2.

(FII) We have

ρ∨• = 3α∨1 + 5α∨2 + 3α∨3 ,

ρ• =
5

2
α1 + 4α2 +

9

2
α3,

w•τ(α4) = α1 + 2α2 + 3α3 + α4.

Therefore we have 〈2ρ∨• , α4〉 = −6 and −〈α∨4 , 2ρ• + w•τα1〉 = 10. So (3.8)
becomes ς24 = q104 = q10, and we can take ς4 = ±q5.

This finishes the proof. �
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Remark 3.11. For Uı of finite type associated to the Satake diagrams in Table 4, we
have κi = 0 (i ∈ I◦) except in four cases (cf. [Le03]): (1) type AIII with I• = ∅ and
with i being the middle node fixed by τ (we regard AI1 as a special case here); (2) type
CI with i being the long simple root; (3) type DIII of even rank (τ = id) with i being
the rightmost white node; (4) type EVII with i being the leftmost node.

Remark 3.12. Lemma 3.10 also follows from [BK15a, Remark 3.14], though they do
not provide the precise values as in Table 3. Their approach has the advantage of being
applicable in Kac-Moody case (under the assumption “νi = 1 for all i ∈ I◦”).

3.5. Levi subalgebras. Note an admissible subdiagram of a Satake diagram (see Def-
inition 3.4) is a Satake diagram itself. We sometimes denote the quantum symmetric
pair (U,Uı) associated to a Satake diagram D with a root datum I by (UI,U

ı
I). Let

A be an admissible subdiagram (with root datum J) of the Satake diagram D. Then
we have a quantum symmetric pair (UJ,U

ı
J).

Lemma 3.13. The coideal subalgebra Uı
J of UJ (whose parameter set is the restriction

from the parameter set of Uı) is naturally a subalgebra of Uı.

Proof. Let us use notation wJ
• to indicate we are talking about the algebraU

ı
J associated

to the root datum J. Let i ∈ I◦ ∩ J. Recall from (3.9) that Bi = Fi + ςiTw•
(Eτi)K̃

−1
i +

κiK̃
−1
i in Uı, and Bi = Fi + ςiTwJ

•

(Eτi)K̃
−1
i + κiK̃

−1
i in Uı

J. A simple key observation

here is that Tw•
(Eτi) = T

wJ
•

(Eτi), which is a direct consequence of the definitions of

subdiagrams of real rank one and admissible subdiagrams. The lemma follows. �

In light of Lemma 3.13, we make the following definition.

Definition 3.14. A subalgebra of Uı of the form Uı
J associated to some admissible

subdiagram of D is called a Levi subalgebra. (Some readers might prefer to call the
subalgebra Uı

JU
ı0 ⊆ Uı a Levi subalgebra of Uı.) Associated to a subdiagram of D

of real (respectively, compact) rank one, Uı
J is called a Levi subalgebra of Uı of real

(respectively, compact) rank one.

A Levi subalgebra of Uı of compact rank one is very simple as it is always isomorphic
to Uq(sl2); it is a basic building block here as for quantum groups. Levi subalgebras of
Uı of real rank one, or ıquantum groups of real rank one, are new (rich and sophisti-
cated) basic building blocks for the theory of quantum symmetric pairs.

3.6. The bar involution. The following (or rather its variant on the modified ıquantum
group below) plays a fundamental role in the theory of ı-canonical basis.

Lemma 3.15. [BK15a] There is a unique anti-linear bar involution of the Q-algebra
Uı, denoted by ¯ or ψı, such that

ψı(q) = q−1, ψı(Bi) = Bi (i ∈ I), ψı(Ei) = Ei (i ∈ I•), ψı(Kµ) = K−µ (µ ∈ Y ı).

Proof. A complete proof for Lemma 3.15 was presented in [BK15a] over K(q
1

d ) for
certain field K containing roots of 1, where they determined the precise constraints on
the parameters. Now the existence of the bar involution of the Q(q)-algebra Uı follows
from our further restrictions on the parameters in Definition 3.5 and Lemma 3.10. �
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Remark 3.16. The bar involution for Uı in the special case of type AIII/AIV (with
I• = ∅) was proved in [BW13] and [ES13] independently. The existence of the bar
involutions on a general ıquantum group Uı was stated in [BW13, §0.5] and verified
by the authors for numerous examples, as it is a prerequisite for the theory of the
ıcanonical bases announced therein.

3.7. The modified ıquantum group. Following the by now standard construction
in quantum groups [Lu94, IV], we can define a modified version of the ıquantum groups
(this was first considered in [BKLW] in a special case of type AIII/AIV). Let λ′, λ′′ ∈ Xı,
we set

λ′Uı
λ′′ = Uı

/( ∑

µ∈Y ı

(Kµ − q〈µ,λ
′〉)Uı +

∑

µ∈Y ı

Uı(Kµ − q〈µ,λ
′′〉)

)
.

Let πλ′,λ′′ : Uı → λ′Uı
λ′′ be the canonical projection. Write 1λ′ = πλ′,λ′(1). Let

U̇ı =
⊕

λ′,λ′′∈Xı

λ′Uı
λ′′ .

Then U̇ı is naturally an associative algebra (without unit). The algebra U̇ı admits a
(Uı,Uı)-bimodule structure as well. Moreover, any weight (left/right) Uı-module can

naturally be regarded as a (left/right) U̇ı-module. In particular, the modified algebra

U̇ is a (Uı,Uı)-bimodule, where the bimodule structure is induced by the natural

embedding ı : Uı → U and the quotient map X → Xı. For any 1λ ∈ U̇ and u ∈ U̇ı (or

Uı), we shall denote by u1λ ∈ U̇ the action of u on 1λ. The first part of the following
proposition follows from (3.10) , and the second part follows from Lemma 3.15.

Proposition 3.17. The following identities hold:

U̇ı =
⊕

ζ∈Xı

Uı−Uı+1ζ =
⊕

ζ∈Xı

Uı−1ζU
ı+ =

⊕

ζ∈Xı

Uı+Uı−1ζ .

There is a bar involution ψı on the Q-algebra U̇ı such that ψı(q) = q−1 and

ψı(Bi1ζ) = Bi1ζ (i ∈ I), ψı(Ei1ζ) = Ei1ζ (i ∈ I•), ψı(1ζ) = 1ζ (ζ ∈ Xı).

Remark 3.18. It is possible to consider U̇ı as a subalgebra of a certain completion of
U̇. But since we only consider weight U-modules (i.e., unital modules in the sense of

[Lu94, §23.1.4]) as Uı-modules, we prefer to regard U̇ as a (U̇ı, U̇ı)-module.

Definition 3.19. We define AU̇
ı to be the set of elements u ∈ U̇ı, such that u·m ∈ AU̇

for all m ∈ AU̇. Then AU̇
ı is clearly a A-subalgebra of U̇ı which contains all the

idempotents 1ζ (ζ ∈ Xı), and AU̇
ı =

⊕
ζ∈Xı AU̇

ı1ζ .

Later we shall show that AU̇
ı is a free A-module such that U̇ı ∼= Q(q) ⊗A AU̇

ı; see
Theorem 6.17(3).

Lemma 3.20. Let u ∈ U̇ı. Then we have u ∈ AU̇
ı if and only if u · 1λ ∈ AU̇ for each

λ ∈ X.

Proof. If remains to prove the “if” direction. Take m ∈ 1λ(AU̇), for some λ ∈ X. By

assumption, we have u · 1λ ∈ AU̇. Thus we have u ·m = u · (1λm) = (u · 1λ)m ∈ AU̇,

and so by definition, u ∈ AU̇
ı. �
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Corollary 3.21. Let u ∈ U̇ı. Then we have u ∈ AU̇
ı if and only if u

(
AL(λ)

)
⊂ AL(λ)

for all λ ∈ X+.

3.8. Relation with a parabolic subalgebra. Let w = si1 · · · sil be a reduced ex-
pression of an element w ∈W . Then the following elements (for various cij ∈ N)

(3.13) E
(ci1 )

i1
· Ti1(E

(ci2 )

i2
) · · · Ti1 · · · Til−1

(E
(cil )

il
)

form a Q(q)-basis of a subspace U+(w) of U+ and an A-basis of an A-submodule

AU
+(w) of AU

+. The sets U+(w) and AU
+(w) depend only on w but not on the

choices of reduced expressions of w; our subspace U+(w) here is denoted by U+(w, 1)
in [Lu94, 40.2]. In particular, we have U+(w0) = U+ and AU

+(w0) = AU
+.

Let w• = w0w•. We can identify Ṗ with the quotient as Q(q)-spaces

Ṗ ∼= U̇
/
U̇U+(w•)>

where U+(w•)> = ⊕µ∈N[I]\{0}U
+(w•)µ; Note U̇

/
U̇U+(w•)> = U̇

/(∑
x,λ∈X U̇x1λ

)
,

where the sum is taken over all homogeneous x ∈ U+ whose weights are of the form
|x| =

∑
ı∈I aii with ai 6= 0 for some i ∈ I◦. Thus we can define a left U̇ action, which

induces a left U̇ı action on Ṗ. For λ ∈ X, denote by pı = pı,λ the composition map

(3.14) U̇ı1λ −→ U̇1λ −→ U̇1λ
/
U̇U+(w•)>1λ −→ Ṗ1λ.

Lemma 3.22. Let λ ∈ X. The map pı = pı,λ : U̇ı1λ → Ṗ1λ is an isomorphism of left

U̇ı-modules. Moreover pı maps AU̇
ı1λ injectively to AṖ1λ.

Later in Corollary 6.20 we shall see that pı : AU̇
ı1λ −→ AṖ1λ is an isomorphism.

Proof. It is clear by definition that pı is a homomorphism of U̇ı-modules and that pı
maps AU̇

ı1λ to AṖ1λ through the composition AU̇
ı1λ → AU̇1λ → AṖ1λ.

It remains to show that pı : U̇
ı1λ → Ṗ1λ is both surjective and injective. Let us

first prove the surjectivity. We know that Ṗ1λ is spanned by elements of the form
F a1
i1
F a2
i2

· · ·F as
is
b+1λ with b ∈ BI• . We shall proceed by induction on the sum a =

∑
ai

to prove that all such elements are in the image of pı. The base case a = 0 follows from
the fact that Uı+ = U+

I•
. To show any F a1

i1
F a2
i2

· · ·F as
is
b+1λ is in the image of pı, we

consider

(3.15) pı(B
a1
i1
Ba2

i2
· · ·Bas

is
b+1λ) = F a1

i1
F a2
i2

· · ·F as
is
b+1λ + lower terms.

Now by definition (3.9), we see that the “lower terms” are linear combinations of ele-

ments of the form F
a′1
i′
1

F
a′2
i′
2

· · ·F
a′
s′

i′
s′
b′+1λ, where

∑
a′1 < a and b′ ∈ BI• . The surjectivity

follows by induction.
Now we prove the injectivity of pı. Recall the following multiplication maps

Uı− ⊗Uı0 ⊗Uı+ −→ Uı and U− ⊗U0
I•
⊗U+

I•
−→ P.

We can find a subset of J ⊂ ∪∞n=0I
n such that the set M = {Fi1Fi2 · · · |(i1, i2, . . . ) ∈ J}

form Q(q)-bases of U−. Let M ı = {Bi1Bi2 · · · |(i1, i2, . . . ) ∈ J} in Uı−. Thanks to
[Ko14, Propositions 6.1, 6.2], the set {yb+1λ|y ∈ M ı, b ∈ BI•} forms a Q(q)-basis
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of Uı1λ. Moreover by examining the leading terms as in (3.15), we see that the set

{pı(yb
+1λ)|y ∈M ı, b ∈ BI•} forms a Q(q)-basis of Ṗ1λ, whence the injectivity of pı. �

Remark 3.23. There are further intimate connections between the parabolic subalge-
bra P and the algebra Uı. Lemma 6.2 below is another such example. Moreover, the
ı-canonical basis for U̇ı1λ is parametrized by the canonical basis for Ṗ1λ (see Theo-
rem 6.17).

4. Symmetries of quantum symmetric pairs

In this section, we show that Lusztig’s braid group operators T′i,e and T
′′
i,e, for i ∈ I•,

restrict to automorphisms of Uı, and the anti-involution ℘ on U restricts to an anti-
involution of Uı. We then prove that the intertwiner Υ is fixed by the actions of T′i,e
and T

′′
i,e, for i ∈ I•, and this further implies that Υµ ∈ U+(w•w0). We formulate

an Uı-module isomorphism T of any finite-dimensional U-module over Q(q), following
[BK15] and generalizing [BW13].

4.1. Braid group actions on Uı. Recall we have −w• ◦ τ = id as permutations of
the set I•. Recall the braid operators Ti and Tw (for i ∈ I, w ∈W ) on the algebra U.

Lemma 4.1. We have

TiTw•
= Tw•

Tτi, ∀i ∈ I•.

In particular T
2
w•

commutes with Ti for any i ∈ I•.

Proof. Since siw• = w•sτi ∈W• has length ℓ(w•)−1, we have TiTsiw•
= Tw•

= Tsiw•
Tτi,

for all i ∈ I•. Hence TiTw•
= TiTsiw•

Tτi = Tw•
Tτi. Also we have

TiT
2
w•

= Tw•
TτiTw•

= T
2
w•
Tτ2i = T

2
w•
Ti.

The lemma is proved. �

Let us record the following formulas for future use (cf. [Ko14, Lemma 3.4] [BW13,
Lemma 1.4]): for any i ∈ I•, recalling Definition 3.1(2), we have

T
−1
w•

(Ei) = −K̃−τiFτi, T
−1
w•

(Fi) = −EτiK̃τi,

Tw•
(Ei) = −FτiK̃τi, Tw•

(Fi) = −K̃−τiEτi.
(4.1)

Theorem 4.2 below confirms the conjecture in [KP11] on the existence of a braid group
action on Uı associated to WI• .

Theorem 4.2. For any i ∈ I• and e = ±1, the braid group operators T
′
i,e and T

′′
i,e

restrict to isomorphisms of Uı. More explicitly, we have, for j 6= i,

T
′
i,e(Bj) =

∑

r+s=−〈i,j′〉

(−1)rq−eri B
(s)
i BjB

(r)
i ,

T
′′
i,−e(Bj) =

∑

r+s=−〈i,j′〉

(−1)rq−eri B
(r)
i BjB

(s)
i .
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Proof. Let i ∈ I•. We shall only prove the theorem for Ti = T
′′
i,+1, as the other cases

are proved by similar computations.
Since si preserves Y

ı in (3.3), Ti preserves the subalgebras U• and Uı0 of Uı. Then
it remains to check the action of Ti on the generators Bj for j ∈ I◦. Recall Bj =

Fj + ςjTw•
(Eτj)K̃

−1
j + κjK̃

−1
j . If 〈i, j′〉 = 〈τi, τj′〉 = 0, we have Ti(Bj) = Bj by

Lemma 4.1. In particular, if κj 6= 0 (and hence 〈i, j′〉 = 0 ∀i ∈ I•), then Ti(Bj) = Bj,
∀i ∈ I•.

It remains to consider the case where i ∈ I•, j ∈ I◦ such that 〈i, j〉 6= 0. Recall by
(2.5) that

Ti(Fj) =
∑

r+s=−〈i,j′〉

(−1)rqriF
(r)
i FjF

(s)
i , Tτi(Eτj) =

∑

r+s=−〈i,j′〉

(−1)rq−ri E
(s)
τi EτjE

(r)
τi .

We shall also use the identity

(FiK̃i)
s = q

−s(s−1)
i F s

i K̃
s
i .

By Lemma 4.1 and (4.1), we have

Ti(Bj) = Ti(Fj) + ςjTw•
Tτi(Eτj)Ti(K̃

−1
j )

=
∑

r+s=−〈i,j′〉

(−1)rqriF
(r)
i FjF

(s)
i + ςjTw•

∑

r+s=−〈i,j′〉

(−1)rq−ri E
(s)
τi EτjE

(r)
τi · Ti(K̃

−1
j )

=
∑

r+s=−〈i,j′〉

(−1)rqriF
(r)
i FjF

(s)
i +

ςj
∑

r+s=−〈i,j′〉

(−1)rq−ri (−FiK̃i)
(s)
Tw•

(Eτj)(−FiK̃i)
(r) · Ti(K̃

−1
j )

=
∑

r+s=−〈i,j′〉

(−1)rqriF
(r)
i FjF

(s)
i +

ςj
∑

r+s=−〈i,j′〉

(−1)sq−ri (FiK̃i)
(s)
Tw•

(Eτj)(FiK̃i)
(r) · Ti(K̃

−1
j )

=
∑

r+s=−〈i,j′〉

(−1)rqriF
(r)
i FjF

(s)
i +

ςj
∑

r+s=−〈i,j′〉

(−1)sq
−r−(r+s)(r+s−1)−s〈i,j′〉
i F

(s)
i Tw•

(Eτj)F
(r)
i · K̃

−〈i,j′〉
i Ti(K̃

−1
j )

=
∑

r+s=−〈i,j′〉

(−1)rqriF
(r)
i FjF

(s)
i +

ςj
∑

r+s=−〈i,j′〉

(−1)sq
−r+(r−1)〈i,j′〉
i F

(s)
i Tw•

(Eτj)F
(r)
i · K̃−1j
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=
∑

r+s=−〈i,j′〉

(−1)rqriF
(r)
i FjF

(s)
i + ςj

∑

r+s=−〈i,j′〉

(−1)sqsiF
(s)
i Tw•

(Eτj)K̃
−1
j F

(r)
i

=
∑

r+s=−〈i,j′〉

(−1)rqriF
(r)
i BjF

(s)
i

=
∑

r+s=−〈i,j′〉

(−1)rqriB
(r)
i BjB

(s)
i ∈ Uı.

The theorem follows. �

Corollary 4.3. For any u ∈ Uı, e = ±1, and i ∈ I•, we have

ψı(T
′′
i,e(u)) = T

′′
i,−e(ψı(u)).

Proof. As ψı and T
′′
i,e are algebra isomorphisms, it suffices to check the identity for

u being generators of Uı. For generators in UI• or in Uı0, this follows from [Lu94,
§37.2.4]. For u = Bi with i ∈ I◦, the identity follows from the formulas in Theorem 4.2
and that ψı(Bi) = Bi from Lemma 3.15. �

4.2. Anti-involution ℘ on Uı. We study the restriction to Uı of the anti-involution
℘ : U → U in Proposition 2.1.

Lemma 4.4. For all i, j ∈ I, the following identities hold on U:

℘(T′′i,e(Ej)) = (−qi)
e〈i,j′〉

T
′
i,−e(℘(Ej)),

℘(T′i,e(Ej)) = (−qi)
−e〈i,j′〉

T
′′
i,−e(℘(Ej)).

Proof. We shall prove the first identity only, as the second one is similar. When 〈i, j′〉 =
0, the first identity is trivial.

For i = j, we have

℘(T′′i,e(Ei)) = ℘(−FiK̃ei) = −q−1i K̃eiEiK̃−i = −q
−1+e〈i,i′〉
i EiK̃eiK̃−i.

On the other hand, we have

T
′
i,−e(℘(Ei)) = T

′
i,−e(q

−1
i FiK̃i) = −q−1i EiK̃eiK̃−i.

Hence the first identity for i = j holds.
For i 6= j with 〈i, j′〉 6= 0, we have

℘(T′′i,e(Ej)) =℘
( ∑

r+s=−〈i,j′〉

(−1)rq−eri E
(s)
i EjE

(r)
i

)
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=
∑

r+s=−〈i,j′〉

(−1)rq−eri (q−1i FiK̃i)
(r)(q−1j FjK̃j)(q

−1
i FiK̃i)

(s)

=
∑

r+s=−〈i,j′〉

(−1)rq−eri q−1j F
(r)
i FjF

(s)
i K̃

−〈i,j′〉
i K̃j

=
∑

r+s=−〈i,j′〉

(−1)sq−1j (−qi)
e〈i,j′〉qesi F

(r)
i FjF

(s)
i K̃

−〈i,j′〉
i K̃j

=q−1j (−qi)
e〈i,j′〉

∑

r+s=−〈i,j′〉

(−1)sqesi F
(r)
i FjF

(s)
i Ti(K̃j).

On the other hand, we have

T
′
i,−e(℘(Ej)) = T

′
i,−e(q

−1
j FjK̃j)

=q−1j

∑

r+s=−〈i,j′〉

(−1)rqeri F
(s)
i FjF

(r)
i Ti(K̃j).

This completes the proof of the first identity and the lemma. �

Corollary 4.5. For i ∈ I◦ and e = ±1, we have

℘(T′′w•,e(Ei)) = (−1)〈2ρ
∨

•
,i′〉q

e〈i,2ρ•〉
i T

′
w•,−e(℘(Ei)),

℘(T′w•,e(Ei)) = (−1)〈2ρ
∨

•
,i′〉q

−e〈i,2ρ•〉
i T

′′
w•,−e(℘(Ei)).

Proof. We shall only prove the first identity, as the proof of the second one is similar.
Let w• = si1si2 · · · sil be a reduced expression of w•. Write wk = siksik+1

· · · sil for
1 ≤ k ≤ l. Note that Twk

(Ei) ∈ U+. Thus applying Lemma 4.4 repeatedly, we have

℘(T′′w•,e(Ei)) = (−qi1)
e〈i1,w2(i′)〉(−qi2)

e〈i2,w3(i′)〉 · · · (−qil)
e〈il,i

′〉
T
′
w•,−e(℘(Ej))

= (−qi1)
e〈w−1

2
(i1),i′〉(−qi2)

e〈w−1

3
(i2),i′〉 · · · (−qil)

e〈il,i
′〉
T
′
w•,−e(℘(Ej))

♠
= (−1)〈2ρ

∨

•
,i〉q

e〈i,2ρ•〉
i T

′
w•,−e(℘(Ej)),

where the identity ♠ follows from the fact that {w−1i+1(αi)|1 ≤ i ≤ l} consists of all
positive roots in Y• and the equality

(4.2)

l∑

k=1

ik · ik
2

〈
w−1k+1(ik), i

′
〉
=
i · i

2
〈i, 2ρ•〉.

The equation (4.2) can be verified as follows:

l∑

k=1

ik · ik
2

〈w−1k+1(ik), i
′〉 =

l∑

k=1

ik · ik
2

〈ik, wk+1(i
′)〉

=

l∑

k=1

ik · wk+1(i)
♥
=

l∑

k=1

w−1k+1(ik) · i

=
l∑

k=1

i · i

2
〈i, w−1k+1(ik)〉 =

i · i

2
〈i, 2ρ•〉,
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where the identity ♥ follows from the W -invariance of the bilinear pairing · : Z[I] ×
Z[I] → Z. �

Recall from Lemma 3.10 that ς1 = ±q−11 in type AI1, and by Remark 3.11, this is
the only local rank one case which allows the parameter κ1 6= 0.

Proposition 4.6. Assume that ςi = q−1i if κi 6= 0. The anti-involution ℘ on U restricts
to an anti-involution ℘ on Uı such that

℘(Ei) = q−1i FiK̃i, ℘(Fi) = q−1i EiK̃
−1
i , ℘(Kµ) = Kµ, ∀i ∈ I•;(4.3)

℘(Bi) = q−1i ς−1τi T
−1
w•

(Bτi) · K̃w•τiK̃
−1
i , ∀i ∈ I◦.(4.4)

Proof. Equation (4.3) follows from the formula for ℘ on U in Proposition 2.1.

Let us prove (4.4). Recall Bi = Fi+ ςiTw•
(Eτi)K̃

−1
i +κiK̃

−1
i for i ∈ I◦. Note qτi = qi.

Then since ℘ is an anti-isomorphism on U, applying Propsition 2.1(2), Corollary 4.5
and then (3.8), we have

℘(Bi) = q−1i EiK̃
−1
i + ςiK̃

−1
i ℘(Tw•

(Eτi)) + κiK̃
−1
i

= q−1i ς−1τi

(
ςτiEi + qiςτiςiK̃

−1
i ℘(Tw•

(Eτi))K̃i + qiςτiκi

)
K̃−1i

= q−1i ς−1τi

(
ςτiEi + qiςτiςiK̃

−1
i (−1)〈2ρ

∨

•
,i′〉q

〈i,2ρ•〉
i q−1τi T

−1
w•

(Fτi)K̃w•τiK̃i + qiςτiκi

)
K̃−1i

= q−1i ς−1τi

(
ςτiEi + T

−1
w•

(Fτi)K̃w•τi + qiςτiκi

)
K̃−1i .

(4.5)

On the other hand, we have

T
−1
w•

(Bτi) = T
−1
w•

(
Fτi + ςτiTw•

(Ei)K̃
−1
τi + κτiK̃

−1
τi

)

=
(
ςτiEi + T

−1
w•

(Fτi)K̃w•τi + κτi

)
K̃−1w•τi

.
(4.6)

Recall the assumption that ςi = q−1i if κi 6= 0, and note that τi = i if κi 6= 0. The
formula (4.4) follows now by a comparison of (4.5)–(4.6).

Note K̃w•τiK̃
−1
i = θ(K̃i)

−1K̃−1i ∈ Uı. It now follows by Theorem 4.2 that

℘(Bi) = q−1i ς−1τi T
−1
w•

(Bτi) · K̃w•τiK̃
−1
i ∈ Uı.

Hence ℘ maps every generator of Uı to elements in Uı, and so it is an anti-involution
on Uı. �

Remark 4.7. A more careful analysis of the proof of Proposition 4.6 shows that the
anti-involution ℘ : U → U restricts to an anti-involution on Uı if and only if the
following conditions (4.7)-(4.8) hold:

ςi = q−1i (if κi 6= 0),(4.7)

℘(Tw•
(Ei)) = q

−〈i,w•τi′〉
i ς−1τi ς

−1
i T

−1
w•

(℘(Ei)), ∀i ∈ I◦.(4.8)

Together with Corollary 4.5, we see that the anti-involution ℘ on Uı requires Con-
dition (3.8) for the parameters ςi (i ∈ I◦) and the additional stronger assumption in
Proposition 4.6.
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For the remainder of the paper, we shall assume that on top of Conditions (3.5)-(3.8)
on the parameters the additional Condition 4.7 holds.

4.3. The intertwiner. Let Û be the completion of the Q(q)-vector space U with
respect to the descending sequence of subspaces U−U0

(∑
ht(µ)≥N U+

µ

)
, for N ≥ 1.

Then we have the obvious embedding of U into Û. We let Û+ be the closure of U+

in Û, and so Û+ ⊆ Û. By continuity the Q(q)-algebra structure on U extends to a

Q(q)-algebra structure on Û. The bar involution ψ on U extends by continuity to an

anti-linear involution ψ on Û.
Note the inclusion map Uı → U is not compatible with the two bar maps on Uı

and U. Recall the ı-weight lattice Xı from (3.3). The following theorem, which has
appeared in the literature recently, is one key ingredient for the current work.

Theorem 4.8. (cf. [BK15, Theorem 6.10]) There exists a unique family of elements

Υµ ∈ U+
µ , such that Υ0 = 1 and Υ =

∑
µΥµ satisfies the following identity (in Û):

(4.9) ψı(u)Υ = Υψ(u), for all u ∈ Uı.

Moreover, Υµ = 0 unless µθ = −µ ∈ X.

Remark 4.9. This theorem was first formulated and established in the special case of
type AIII/AIV (with I• = ∅) in [BW13, Theorem 2.10], generalizing Lusztig’s quasi-
R-matrix; note that Υ therein lies in a completion of U− (not U+) due to a different
convention on the comultiplication ∆. The theorem in general was expected by the
authors as one of the main building blocks in a program of ı-canonical bases arising
from general quantum symmetric pairs announced in [BW13, §0.5], since it leads to
a new bar involution ψı on based U-modules (see Proposition 5.1); we verified the
theorem in the cases when I• = ∅. In the meantime, this theorem has appeared with a
complete proof in full generality in Balagović and Kolb [BK15] (where Υ was denoted
by X and called a quasi-K-matrix).

Remark 4.10. It is instructive to view the following familiar cases as two extreme cases
of quantum symmetric pairs.

(1) When I = I• (and recall τ = −w• on I•), we have Uı = UI• = U, the usual
Drinfeld-Jimbo quantum group. In this case, the intertwiner Υ is the identity.

(2) Consider the algebra imbedding φ = (ω ⊗ 1) ◦ ∆ : U → U ⊗ U. One checks
that φ(U) is a coideal subalgebra of U ⊗ U, and hence we have a quantum
symmetric pair of diagonal type (U⊗U,U). Then the intertwiner in this case
is Lusztig’s quasi-R-matrix twisted by ω ⊗ 1. Hence, Lustig’s construction of
the bar involution and the canonical basis on the tensor product modules fits
well with our general construction.

Since ψı(u) = ψ(u), for u ∈ UI• , the identity (4.9) implies that

(4.10) uΥ = Υu, for u ∈ UI• .

The following corollary is the same as for [BW13, Corollary 2.13], which follows by
the uniqueness of Υ.

Corollary 4.11. We have ψ(Υ) = Υ−1.
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4.4. Properties of the intertwiner. We now establish several new properties of the
intertwiner Υ in connection with braid group action on Uı. They will be used later on
to establish the integrality of Υ.

Lemma 4.12. For µ ∈ N[I], i ∈ I• and e = ±1, we have

(1) ri(Υµ) = ir(Υµ) = 0;
(2) T

′′
i,e(Υµ) ∈ U+ and T

′
i,e(Υµ) ∈ U+.

Proof. Note by Equation (4.10) and by [Lu94, 3.1.6] that, for i ∈ I•,

FiΥµ −ΥµFi = 0,

FiΥµ −ΥµFi =
K̃−i ir(Υµ)− ri(Υµ)K̃i

qi − q−1i

.

Hence it follows that ri(Υµ) = ir(Υµ) = 0. Therefore we have T
′′
i,1(Υµ) ∈ U+ and

T
′
i,−1(Υµ) ∈ U+ by [Lu94, Proposition 38.1.6]. On the other hand, since Υµ is homo-

geneous, we have T
′′
i,e(Υµ) = (−qi)

e〈i,µ〉
T
′
i,e(Υµ). The lemma follows. �

The symmetries T′i,e and T
′′
i,e extend by continuity to symmetries of Û.

Proposition 4.13. We have T
′′
i,e(Υ) = Υ and T

′
i,e(Υ) = Υ for all i ∈ I•, e = ±1.

Proof. For any u ∈ Uı, applying T
′′
i,e to Equation (4.9) gives us

(4.11) T
′′
i,e(ψı(u))T

′′
i,e(Υ) = T

′′
i,e(Υ)T′′i,e(ψ(u)).

By Corollary 4.3 and by Proposition 2.2(2), we rewrite (4.11) as

(4.12) ψı(T
′′
i,−e(u))T

′′
i,e(Υ) = T

′′
i,e(Υ)ψ(T′′i,−e(u)).

Since T
′′
i,−e restricts to an isomorphism of Uı by Theorem 4.2, T′′i,−e(u) can be any

element in Uı. Therefore we have

ψı(x)T
′′
i,e(Υ) = T

′′
i,e(Υ)ψ(x), for all x ∈ Uı.

It is clear that T′′i,e(Υ0) = Υ0 = 1. Thanks to Lemma 4.12 and the uniqueness of the

intertwiner, we have Υ = T
′′
i,e(Υ). The other identity is entirely similar. �

Remark 4.14. Proposition 4.13 also follows from [BK15, §3.1] if one considers Ti as an
element in the algebra of natural transformations of the forgetful functor.

Recall from (3.13) the subspace U+(w) of U+, for w ∈W . Note ℓ(w•w0) = ℓ(w0)−
ℓ(w•).

Proposition 4.15. We have Υµ ∈ U+(w•w0) for any µ ∈ N[I].

Proof. If I• = ∅, the statement follows by Theorem 4.8. So let us assume I• 6= ∅. Now
choose a reduced expression si1 · · · sil of w0 such that si1 · · · sik = w• (in particular
i1 ∈ I•) and sk+1 · · · sil = w•w0. We have a PBW basis (3.13) for U+ associated to this
reduced expression of w0. We have ri1(Υµ) = 0 by Lemma 4.12(1), and thus by [Lu94,
Proposition 38.1.6] we can write

Υµ =
∑

c(ci2 , . . . , cil) Ti1(E
(ci2 )

i2
) · · ·

(
Ti1 . . . Til−1

(E
(cil )

il
)
)
,
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for scalars cia ∈ Q(q). If ℓ(w•) = 1, we are done.
If ℓ(w•) > 1, then i2 ∈ I•. By Proposition 4.13, we have

Υµ = T
−1
i1

(Υµ) =
∑

c(ci2 , . . . , cil)E
(ci2 )
i2

Ti2(E
(ci3 )
i3

) · · ·
(
Ti2 . . . Til−1

(E
(cil )

il
)
)
,

which, by Lemma 4.12(1) and [Lu94, Proposition 38.1.6], is of the form

Υµ =
∑

c(0, ci3 , . . . , cil)Ti2(E
(ci3 )
i3

) · · ·
(
Ti2 . . . Til−1

(E
(cil )

il
)
)
.

Repeating the process ℓ(w•) = k times, we obtain

Υµ =
∑

c(0, · · · , 0, cik+1
, . . . , cil)Tik(E

(cik+1
)

ik+1
) · · ·

(
Tik . . . Til−1

(E
(cil )

il
)
)
.

This shows that Υµ ∈ U+(w•w0). �

The strong constraint on Υ proved in Proposition 4.15 shall allow us to compute the
intertwiner Υ (almost) explicitly and to establish the integrality of Υ in all real rank
one cases (as listed in Table 1). See the Appendix for the detailed computation.

4.5. The isomorphism T. Consider the automorphism obtained by the composition

ϑ = σ ◦ ℘ ◦ τ : U −→ U,

which sends

(4.13) ϑ(Ei) = qτiFτiK̃−τi, ϑ(Fi) = qτiEτiK̃τi, ϑ(Kµ) = K−τµ.

For any finite-dimensional U-module M , we define a new U-module ϑM as follows:
ϑM has the same underlying Q(q)-vector space asM but we shall denote a vector in ϑM
by ϑm for m ∈M , and the action of u ∈ U on ϑM is now given by u ϑm = ϑ(ϑ−1(u)m).

Hence we have

(4.14) ϑ(u) ϑm = ϑ(um), for u ∈ U,m ∈M.

As ϑM is simple if the U-module M is simple, one checks by definition that

ϑL(λ) ∼= ωL(λτ ).

Let

(4.15) g : X −→ Q(q)

be a function such that for all µ ∈ X, we have

g(µ) = g(µ − i′)ςi(−1)〈2ρ
∨

•
,i′〉q

〈i,2ρ•〉
i qiq

〈−i,µ〉
i q

〈τi,w•µ〉
τi , for i ∈ I◦,(4.16)

g(µ) = −q
−1−2〈i,µ−i′〉
i g(µ − i′) = −q

3−2〈i,µ〉
i g(µ − i′), for i ∈ I•.(4.17)

Such a function g exists. (Actually we can construct such a g taking values in A.)

Lemma 4.16. For any µ ∈ X, we have

g(µ) = g(µ − w•i
′)ς−1τi (−1)〈2ρ

∨

•
,τ i′〉q

−〈τi,2ρ•〉
τi q

〈τi,µ−w•i′〉
τi qiq

−〈i,w•µ〉
i , for i ∈ I◦,

g(µ) = −q
1+2〈i,µ〉
i g(µ + i′), for i ∈ I•.
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Proof. The second identity follows from (4.17) directly. We shall prove now the first
one. Let i ∈ I◦. For any j ∈ I•, by definition (4.17), we have

g(µ − ν) = g(µ − ν + 〈j, ν〉j′)(−1)〈j,ν〉q
2〈j,ν〉2−〈j,ν〉
j q

2〈j,ν〉〈j,µ−ν〉
j

= g(µ − sj(ν))(−1)〈j,ν〉q
−〈j,ν〉
j q

2〈j,ν〉〈j,µ〉
j .

Then a similar computation as Corollary 4.5 shows that

(4.18) g(µ − i′) = g(µ − w•i
′)(−1)〈2ρ

∨

•
,i′〉q

−〈i,2ρ•〉
i q

2〈i−w•i,µ〉
i .

Note that since τi− τw•i ∈ Z[I•] ⊂ Y , we have τ(τi− τw•i) = −w•(τi− τw•i). Hence
we have i − w•i = τi − w•τi ∈ Y . Then using (4.16), we see Equation (4.18) can be
written as

g(µ) = g(µ−w•i
′)ςi(−1)〈2ρ

∨

•
,i′〉q

〈i,2ρ•〉
i qiq

〈i,w•τi′〉
i (−1)〈2ρ

∨

•
,τ i′〉q

−〈τi,2ρ•〉
τi q

〈τi,µ−w•i′〉
τi q

−〈i,w•µ〉
i .

Now the desired equation follows from the constraint (3.8) on the parameters ςiςτi. �

The function g induces a Q(q)-linear map from any finite-dimensional U-module M
to itself:

g̃ :M −→M, g̃(m) = g(µ)m, for m ∈Mµ.

The following lemma is similar to Corollary 4.5, and it can also be read off from the
proof of [BK15a, Lemma 2.9].

Lemma 4.17. For i ∈ I◦, we have

Tw•
(Ei) = (−1)〈2ρ

∨

•
,i′〉q
−〈i,2ρ•〉
i T

−1
w•

(Ei).

Proof. Thanks to [Lu94, §37.2.4], we have

Tj(Ei) = T
′′
j,+1(Ei) = T

′′
j,−1(Ei) = (−qi)

−〈j,i′〉
T
′
j,−1(Ei) = (−qi)

−〈j,i′〉
T
−1
j (Ei).

The rest of the proof is essentially the same as of the proof of Corollary 4.5, and will
be skipped. �

Recall we denote by η = ηλ the highest weight vector in L(λ). Let η• = η•λ be the
unique canonical basis element in L(λ) of weight w•λ.

Theorem 4.18. (cf. [BK15, Theorem 7.5]) For any finite-dimensional U-module M ,
we have the following isomorphism of Uı-modules

T := Υ ◦ g̃ ◦ T−1w•
:M −→ ϑM.

In particular, we have the isomorphism of Uı-modules

T : L(λ) −→ ωL(λτ ), η•λ 7→ ξ−λτ .

Moreover, we can choose a function g such that T is an isomorphism of the A-form

AL(λ) −→
ω
A
L(λτ ) [once we establish Theorem 5.3].

Proof. It is clear that T is a Q(q)-linear isomorphism. Thus it suffices to verify that
T defines a homomorphism of Uı-modules. We shall prove ϑ(T(ϑ(u) · m)) = ϑ(u) ·
ϑ(T(m)) = ϑ(u · T(m)), or equivalently,

(♣) T(ϑ(u) ·m) = u · T(m), for u ∈ Uı, m ∈Mµ.
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The identity (♣) is clear for u = Kν (ν ∈ Y ı), and we verify it on generators u = Bi

(i ∈ I◦), u = Fj , Ej (j ∈ I•) in (1)–(3) below.
Case (1). We first check this identity (♣) for u = Bi with i ∈ I◦. Recall Bi =

Fi + ςiTw•
(Eτi)K̃

−1
i + κiK̃

−1
i . By Corollary 4.5 we have

ϑ(Bi) = qτiEτiK̃τi + ςiσ ◦ ℘ ◦ τ ◦ Tw•
(Eτi)K̃τi + κiK̃τi

= qτiEτiK̃τi + ςi(−1)〈2ρ
∨

•
,i′〉q
〈i,2ρ•〉
i Tw•

(σ ◦ ℘(Ei))K̃τi + κiK̃τi

= qτiEτiK̃τi + ςi(−1)〈2ρ
∨

•
,i′〉q
〈i,2ρ•〉
i qiTw•

(Fi)Tw•
(K̃−i)K̃τi + κiK̃τi.

Therefore we have

T
−1
w•

◦ ϑ(Bi) =qτiT
−1
w•

(Eτi)T
−1
w•

(K̃τi)

+ ςi(−1)〈2ρ
∨

•
,i′〉q

〈i,2ρ•〉
i qiFiK̃−iT

−1
w•

(K̃τi) + κiT
−1
w•

(K̃τi).

On the other hand, thanks to Lemma 4.17, we have

ψ(Bi) = Fi + ς−1i Tw•
(Eτi)K̃i + κiK̃i

= Fi + ς−1i (−1)〈2ρ
∨

•
,τ i′〉q

−〈τi,2ρ•〉
τi T

−1
w•

(Eτi)K̃i + κiK̃i.

The left-hand side of (♣) can now be computed as follows:

T(ϑ(Bi)m) = Υ ◦ g̃ ◦ T−1w•

(
ϑ(Bi)m

)
= Υ ◦ g̃

((
T
−1
w•

◦ ϑ(Bi)
(
T
−1
w•

(m)
)))

=Υ ◦ g̃
(
qτiT

−1
w•

(Eτi)T
−1
w•

(K̃τi)T
−1
w•

(m) + κiT
−1
w•

(K̃τi)T
−1
w•

(m)

+ ςi(−1)〈2ρ
∨

•
,i′〉q

〈i,2ρ•〉
i qiFiK̃−iT

−1
w•

(K̃τi)T
−1
w•

(m)
)

=Υ
(
g(w•µ+ w•τi

′)qτiT
−1
w•

(Eτi)T
−1
w•

(K̃τi)T
−1
w•

(m) + g(w•µ)κiT
−1
w•

(K̃τi)T
−1
w•

(m)

+ g(w•µ− i′)ςi(−1)〈2ρ
∨

•
,i′〉q
〈i,2ρ•〉
i qiFiK̃−iT

−1
w•

(K̃τi)T
−1
w•

(m))
)

=Υ
(
g(w•µ+ w•τi

′)qτiq
〈τi,µ〉
τi T

−1
w•

(Eτi)T
−1
w•

(m) + g(w•µ)q
〈τi,µ〉
τi κiT

−1
w•

(m)

+ g(w•µ− i′)ςi(−1)〈2ρ
∨

•
,i′〉q
〈i,2ρ•〉
i qiq

〈τi,µ〉
τi q

−〈i,w•µ〉
i FiT

−1
w•

(m))
)
.

The right-hand side of (♣) is given by

Bi · T(m) =Bi

(
Υ ◦ g̃ ◦ T−1w•

(m)
)
= Υ

(
ψ(Bi)

(
g̃ ◦ T−1w•

(m)
))

=Υ
(
g(w•µ)FiT

−1
w•

(m) + g(w•µ)κiq
〈i,w•µ〉
i T

−1
w•

(m)

+ g(w•µ)ς
−1
i (−1)〈2ρ

∨

•
,τ i′〉q

−〈τi,2ρ•〉
τi q

〈i,w•µ〉
i T

−1
w•

(Eτi)T
−1
w•

(m)
)
.

Now the identity T(ϑ(Bi) ·m) = Bi · T(m) follows by comparing the coefficients using

(4.16) and Lemma 4.16. Note that if κi 6= 0, we have q
〈τi,µ〉
i = q

〈i,w•µ〉
i .
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Case (2). Let u = Fj (j ∈ I•). We have T
−1
w•

◦ ϑ(Fi) = −q3τiFiK̃
−2
i . So the left-hand

side of (♣) can be computed as follows:

T(ϑ(Fj)m) =Υ ◦ g̃ ◦ T−1w•
(ϑ(Fj)m)

=Υ ◦ g̃
(
− q3τiFiK̃

−2
i T

−1
w•

(m)
)

=Υ
(
− g(w•µ− i′)q3τiq

−2〈i,w•µ〉
i FiT

−1
w•

(m)
)
.

The right-hand side of (♣) reads

Fj · T(m) = Fj ·Υ ◦ g̃ ◦ T−1w•
(m) = Υ

(
g(w•µ)FjT

−1
w•

(m)
)
.

Now the desired identity (♣) for u = Fj (j ∈ I•) follows from (4.17).

Case (3). Let u = Ej (j ∈ I•). We have T
−1
w•

◦ ϑ(Ei) = −qτiEiK̃
2
i . So the left-hand

side of (♣) can be computed as follows:

T(ϑ(Ej)m) =Υ ◦ g̃ ◦ T−1w•
(ϑ(Ej)m)

=Υ ◦ g̃
(
− qτiEiK̃

2
i T
−1
w•

(m)
)

=Υ
(
− g(w•µ+ i′)qτiq

2〈i,w•µ〉
i EiT

−1
w•

(m)
)
.

The right-hand side of (♣) reads

Ej · T(m) = Ej ·Υ ◦ g̃ ◦ T−1w•
(m) = Υ

(
g(w•µ)EjT

−1
w•

(m)
)
.

Now the desired identity (♣) for u = Ej (j ∈ I•) follows from Lemma 4.16.
The statement on the A-form follows from the definition of the function g now. This

finishes the proof. �

Remark 4.19. TheUı-module isomorphism T was first constructed in the special case of
quantum symmetric pairs of type AIII/AIV with I• = ∅ [BW13, §2.5, §6.2], and readily
generalized by the authors to quantum symmetric pairs with I• = ∅ (before the posting
of [BK15] in arXiv). The first statement in Theorem 4.18 in this generality is due to
[BK15, Theorem 7.5] (in which the notation K′ in place of T is used). Our construction
here uses a Q(q)-valued function g and a twisting by ϑ, slightly different from the
twisting ττ0 therein, so we can take advantage of earlier results (mainly Corollary 4.5).
It is further shown in [BK15] that K′ leads to a universal K-matrix K, which provides
solutions to the quantum reflection equation (just like Drinfeld’s universal R-matrix
provides solutions to Yang-Baxter equation).

Our second statement on the isomorphism of Uı-modules T : L(λ) → ωL(λτ ) will
be used later on. Later as a consequence of Theorem 5.3 we see that T preserves the
A-forms, i.e., T : AL(λ) →

ω
A
L(λτ ).

5. Integrality of the intertwiner and ı-canonical bases for modules

In this section, we establish the integrality of the intertwiner Υ. This is first carried
out by a case-by-case computation in the real rank one case. In the real rank one case,
the integrality of Υ eventually leads to the existence of ı-canonical basis of U̇ı, which
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ensures the existence of (integral) ı-divided powers for all i ∈ I. The existence of ı-
divided powers is then used here to complete the proof of integrality of Υ in the general
finite type case. We then construct an ı-canonical basis on any finite-dimensional simple
U-module L(λ) as well as on the tensor products of several such simple modules.

5.1. Bar involution ψı on modules. Recall [Lu94, Chapter 27] has developed a
theory of finite-dimensional based U-modules (M,B). The basis B generates a Z[q−1]-
submodule M and an A-submodule AM of M .

Recall from Lemma 3.15 the bar involution ψı on Uı. Recall [BW13, Definition 3.9]
that a Uı-module M equipped with an anti-linear involution ψı is called involutive (or
ı-involutive) if

ψı(um) = ψı(u)ψı(m), ∀u ∈ Uı,m ∈M.

The following proposition is [BW13, Proposition 3.10] verbatim in our more general
setting, and we repeat its short proof for the sake of completeness.

Proposition 5.1. Let M be a based U-module with bar involution ψ. Then M is an
ı-involutive Uı-module with involution

(5.1) ψı := Υ ◦ ψ.

Proof. It follows by Theorem 4.8 and (5.1) that ψı(um) = Υψ(um) = Υψ(u)ψ(m) =
ψı(u)Υψ(m) = ψı(u)ψı(m), for all u ∈ Uı and m ∈ M . Hence M is ı-involutive. By
Corollary 4.11, we have ψı(ψı(m)) = Υψ(Υψ(m)) = ΥΥψ(ψ(m)) = ΥΥm = m. Hence
ψı is an involution. �

Recall Lusztig defined a bar involution ψ on (tensor products of) finite-dimensional
simple U-modules (via quasi-R-matrix); cf. [Lu94, 27.3].

Corollary 5.2. There is a bar involution ψı = Υψ on the U-module L(λ) and on the
tensor product U-modules L(λ1)⊗ · · · ⊗ L(λr), for λ, λ1, . . . , λr ∈ X+, and r ≥ 1.

5.2. Integrality of the intertwiner. In this section we prove the integrality of the
intertwiner for an arbitrary finite type.

Theorem 5.3.

(1) For quantum symmetric pair (U,Uı) of real rank one, the intertwiner Υ is
integral; that is, Υ =

∑
µΥµ with Υµ ∈ AU

+ for all µ.

(2) Let (U,Uı) be any quantum symmetric pair of finite type. Under the assumption
of the validity of Theorem 6.17 for all quantum symmetric pairs of real rank one,
the intertwiner Υ for (U,Uı) is integral; that is, Υ =

∑
µΥµ with Υµ ∈ AU

+

for all µ.

Proof. Part (1) is proved by a tedious though straightforward case-by-case computation
in Appendix A.

Let us prove (2). (The reader is supposed to know Theorem 6.17 in the special case
of real rank one, which will be established using Part (1) only.) Fix an i ∈ I◦. There
exists a Levi subalgebra Uı

i of U
ı containing Bi of real rank one (see Table 2). Consider

AU̇
ı
i =

∑
ζ∈Xı A

Uı
i1ζ , and the canonical basis elements B

(a)
i := (1♦ı

ζF
(a)
i ) ∈ AU̇

ı
i (see

Theorem 6.17), for a ≥ 0 and ζ ∈ Xı. We have a natural embedding AU̇
ı
i →֒ AU̇

ı. By
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abuse of notation we shall denote by the same notation B
(a)
i for the image of B

(a)
i in

U̇ı. It follows by Theorem 6.17 (for U̇ı
i) that B

(a)
i ∈ AU̇

ı.

Denote by ′
A
U̇ı theA-subalgebra of U̇ı generated byB

(a)
i for i ∈ I◦, and F

(a)
j 1ζ , E

(a)
j 1ζ

for j ∈ I•, for all a ≥ 0 and ζ ∈ Xı. By Corollary 3.21, B
(a)
i in AU̇

ı preserves

AL(λ), for all λ ∈ X+. As the other generators of ′
A
U̇ı clearly preserve AL(λ), we have

′
A
U̇ı

AL(λ) ⊆ AL(λ). Actually a stronger statement holds as follows.

Claim (⋆). We have ′
A
U̇ıηλ = AL(λ), for λ ∈ X+.

A spanning set for AL(λ) is given by F
(a1)
i1

F
(a2)
i2

· · ·F
(as)
is

η for various s ≥ 0, ij ∈ I

and aj ≥ 0. We shall argue that x = F
(a1)
i1

F
(a2)
i2

· · ·F
(as)
is

η ∈ ′
A
U̇ıηλ, by induction on

the height ht(x) =
∑s

j=1 aj . We can assume without loss of generality that a1 > 0,

and so x′ := F
(a2)
i2

· · ·F
(as)
is

η lies in ′
A
U̇ıηλ by the inductive assumption. If i1 ∈ I•,

then F
(a1)
i1

∈ ′
A
U̇ı and x = F

(a1)
i1

x′ ∈ ′
A
U̇ıx′ ∈ ′

A
U̇ıηλ. Assume now i1 ∈ I◦. Define

y = B
(a1)
i1

x′ ∈ ′
A
U̇ıηλ. As x − y = (B

(a1)
i1

− F
(a1)
i1

)x′ ∈ AL(λ) has height less than the

height of x, we have x− y ∈ ′
A
U̇ıηλ by the inductive assumption, and so we also have

x = y + (x− y) ∈ ′
A
U̇ıηλ. This proves Claim (⋆).

The A-algebra ′
A
U̇ı is clearly stable under the bar map ψı, and recall ψı(η) = η.

It follows by Claim (⋆) and Proposition 5.1 that AL(λ) is ψı-invariant. Hence AL(λ)
is stable under the action of Υ = ψı ◦ ψ. In particular, we have (recall w0 is the
longest element in W ) Υηw0λ ∈ AL(λ), for λ ∈ X+. By taking λ≫ 0, we conclude that
Υµ ∈ AU

+, for each µ. �

Remark 5.4. In the proof above, we only need to assume the validity of Theorem 6.17
for all the Levi subalgebras of Uı of real rank one (see Table 2). For example the
integrality of Υ for type FII is not used in the proof of any other quantum symmetric
pairs.

Remark 5.5. Logically, the reader should read through the remainder of the paper
under the additional assumption of real rank one so Theorem 6.17 for Uı of all real
rank one (which is the assumption of Theorem 5.3(2)) is established fully. Then the
integrality of Υ for Uı of any finite type follows by Theorem 5.3(2).

In the remainder of the paper, we shall use the integrality of Υ for any finite type freely
without mentioning further the assumption in Theorem 5.3(2), thanks to Remark 5.5.

5.3. ı-Canonical bases on based U-modules. Recall the quotient map X → Xı,
µ 7→ µ. We define a partial ordering ≤ı on X by letting, for µ′, µ ∈ X,

(5.2) µ′ ≤ı µ ⇔ µ′ = µ, and µ′ − µ ∈ N[I] ∩ N[w•I].

Note that if µ′ = µ then w•τµ′ = w•τµ by definition of Xı. We also define µ′ <ı µ if
µ′ ≤ı µ and µ′ 6= µ.

We formally extend the partial ordering ≤ı to any set S with a natural weight
function | · | : S → X (such as B(λ) for λ ∈ X+, or any basis B in a based U-module
below), by declaring that

b′ ≤ı b ⇔ |b′| ≤ı |b|, for all b′, b ∈ S.
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Lemma 5.6. Let (M,B) be a finite-dimensional based U-module (cf. [Lu94, Defini-
tion 27.1.2]). Then we have

ψı(b) = b+
∑

b′<ıb

f(b; b′)b′, for b′ ∈ B, f(b; b′) ∈ A.

Proof. Since ψ(b) = b for b ∈ B and ψı = Υψ, we have by Theorem 4.8 and Proposi-
tion 4.15 that

ψı(b) = Υ(b) = b+
∑

b′∈B,b′<ıb

f(b; b′)b′, for f(b; b′) ∈ Q(q).

Note that f(b; b′) ∈ A by Theorem 5.3. �

By applying a standard procedure (cf. [Lu94, Lemma 24.2.1]) to the involution ψı

with the help of Lemma 5.6, we have proved the following.

Theorem 5.7. Let (M,B) be a finite-dimensional based U-module.

(1) The Uı-module M admits a unique basis (called ı-canonical basis) Bı := {bı |
b ∈ B} which is ψı-invariant and of the form

(5.3) bı = b+
∑

b′∈B,b′<ıb

tb;b′b
′, for tb;b′ ∈ q−1Z[q−1].

(2) Bı forms an A-basis for the A-lattice AM (generated by B), and forms a Z[q−1]-
basis for the Z[q−1]-lattice M (generated by B).

Remark 5.8. When I = I•, we have −I = w•I, X = Xı, and hence b ≤ı b
′ actually

means |b| = |b′|. Therefore, in this case the ı-canonical basis reduces to the usual
canonical basis.

Remark 5.9. Similar to Lusztig’s canonical basis, the ı-canonical bases are computable
algorithmically. The ı-canonical basis is not homogenous in terms of the weight lattice
X, though it is homogenous in Xı.

Recall for λ ∈ X+, we denote by AL(λ) (respectively, L(λ)) the A-lattice (respec-
tively, the Z[q−1]-lattice) spanned by {b−η|b ∈ B(λ)}. The following theorem is an
important special case of Theorem 5.7, since L(λ) is well known [Lu90, Ka91] to be a
based U-module.

Theorem 5.10. (1) For any b ∈ B, there is a unique element (b−η)ı ∈ L(λ) which
is ψı-invariant and of the form

(b−η)ı ∈ b−η +
∑

b′<ıb

q−1Z[q−1]b′−η;

(2) The set {(b−η)ı|b ∈ B(λ)} forms a Q(q)-basis of L(λ), an A-basis of AL(λ),
and a Z[q−1]-basis of L(λ) (called the ı-canonical basis).

Recall that a tensor product of several finite-dimensional simple U-modules is a
based U-module by [Lu94, Theorem 27.3.2, §27.3.6]. Theorem 5.7 also implies the
following.



CANONICAL BASES ARISING FROM QUANTUM SYMMETRIC PAIRS 39

Corollary 5.11. Let λ1, . . . , λr ∈ X
+. The tensor product of finite-dimensional simple

U-modules L(λ1) ⊗ . . . ⊗ L(λr) admits a unique ψı-invariant basis of the form (5.3),
where B is understood as Lusztig’s canonical basis on the tensor product.

Recall we write η•λ or simply η• for the unique canonical basis element in L(λ) of
weight w•λ. Moreover, by [Lu94, Lemma 39.1.2], we have

(5.4) η•λ = T
−1
w•

(ηλ).

Some ı-canonical basis elements are easy to identify as follows (even though the
ı-canonical basis differs from canonical basis in general, for example, already in the
natural sln-module; cf. [BW13, Remark 5.10]).

Corollary 5.12. For any b ∈ BI•(λ), the element b−η ∈ L(λ) is an ı-canonical basis
element. In particular, η• ∈ L(λ) is an ı-canonical basis element.

Proof. We already know that ψ(b−η) = b−η by definition. On the other hand, we have
Υ(b−η) = b−η for weight reason, by Proposition 4.15. So ψı(b

−η) = Υψ(b−η) = b−η.
Note η• is equal to b−η ∈ L(λ) for some particular b. By the uniqueness, a canonical
basis element which is ψı-invariant must be ı-canonical. The corollary follows. �

5.4. On QSP of Kac-Moody type. The theory of quantum symmetric pairs of Kac-
Moody (KM) type is developed in Kolb [Ko14]. As we follow Lusztig’s book on quantum
groups, we shall assume that the root datum is X-regular and Y -regular in the sense
of [Lu94]. We briefly comment on the extensions of results in Section 3–5 to QSPs of
KM type.

An ıquantum group of KM type is called locally finite if all of its Levi subalgebras
of real rank one have Satake diagrams listed in Table 1.

On Section 3. All constructions therein make sense for the quantum symmetric pairs
(U,Uı) of KM type (under the assumption “νi = 1 for all i ∈ I◦”, which is conjectured
to always be true in [BK15a, Conjecture 2.7]). The conjecture “νi = 1 for all i ∈ I◦”
holds for Uı of locally finite KM type, and the values ςi are computed as in Table 3.
The study of ı-canonical basis for general KM type leads to the question of studying
in depth Uı of KM type of real rank one.

On Section 4. The statements on braid group action for Uı make sense for the
quantum symmetric pairs (U,Uı) of KM type and in more general parameters as in
[BK15a] (under the assumption “νi = 1 for all i ∈ I◦” as above). However, the statement
on the anti-involution ℘ for Uı of KM type requires the stronger Condition (3.8) on
parameters as explained in Remark 4.7. We refer to Remark 3.7 for the comparison of
parameters and their constraints used in this paper and in [BK15a].

On Section 5. The construction of ı-canonical bases on based U-modules can be
extended to some class of QSP of KM type. We shall return to study the ı-canonical
bases arising from QSP of KM type in a separate work, as additional new ideas are
needed to develop a comprehensive theory of ı-canonical bases in the KM case.

6. Canonical basis for the modified ıquantum group U̇ı

In this section we shall formulate and study a projective system of Uı-modules{
Lı(λ + ντ , µ + ν)

}
ν∈X+ , and establish the asymptotic compatibility of ı-canonical
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bases between these modules. Then we construct the ı-canonical basis on the modified
ıquantum group U̇ı (Theorem 6.17).

6.1. Based modules Lı(λ, µ). In this section we shall consider the based submodule
Lı(λ, µ) = U(η•λ ⊗ ηµ) of L(λ) ⊗ L(µ) introduced in (2.7), for λ, µ ∈ X+. Thanks to
Corollary 2.7 and Theorem 5.7, we already know the existence of the ı-canonical basis
on Lı(λ, µ). The main goal of this subsection is to improve the partial ordering ≤ı in
Theorem 5.7 (1) for the based module Lı(λ, µ).

Remark 6.1. (1) When I• = ∅, we have Lı(λ, µ) ∼= L(λ+ µ) canonically.
(2) When I• = I, we have Lı(λ, µ) = ωL(−w0λ) ⊗ L(µ) since η•λ ⊗ ηµ = ξw0λ ⊗ ηµ.

Then we are back to Lusztig’s setting [Lu94, Chapter 25].

Lemma 6.2. Let λ, µ ∈ X+. We have

(1) Uıη•λ = L(λ) and Uıηλ = L(λ);
(2) Lı(λ, µ) = U(η•λ ⊗ ηµ) = P(η•λ ⊗ ηµ) = Uı(η•λ ⊗ ηµ).

Proof. Part (1) is a special case of Part (2) by taking λ = 0 or µ = 0, and so let us prove
(2). It follow by definition that Lı(λ, µ) = U(η•λ ⊗ ηµ), which is equal to P(η•λ ⊗ ηµ)

thanks to Ei(η
•
λ ⊗ ηµ) = 0 for i ∈ I◦. Since the action of U̇ı1w•λ+µ on η•λ ⊗ ηµ factors

through the projection (3.14), it follows by Lemma 3.22 that U̇ı(η•λ⊗ηµ) = P(η•λ⊗ηµ).
The lemma is proved. �

Lemma 6.3. Let λ, µ ∈ X+. For any b ∈ BI•(λ), the element (b−ηλ)⊗ηµ ∈ L(λ)⊗L(µ)
is an ı-canonical basis element. In particular, η•λ ⊗ ηµ = T

−1
w•

(ηλ)⊗ ηµ is an ı-canonical
basis element.

Proof. To prove the first statement, it suffices to check that (b−ηλ) ⊗ ηµ is a Lusztig
canonical basis element and ψı-invariant. Indeed, since ψ((b−ηλ) ⊗ ηµ) = Θ((b−ηλ) ⊗
ηµ) = (b−ηλ)⊗ηµ, (b

−ηλ)⊗ηµ is a Lusztig canonical basis element. On the other hand,
we have ψı((b

−ηλ) ⊗ ηµ) = Υ((b−ηλ) ⊗ ηµ) = (Υb−ηλ) ⊗ ηµ = (b−ηλ) ⊗ ηµ for weight
reason. Also recall from (5.4) that η•λ = T

−1
w•

(ηλ) is a canonical basis element of L(λ).
The lemma follows. �

For N ≥ 0, let P (N) be the Q(q)-subspace of U̇ spanned by elements of the form

b+1 b
−
2 1ζ for ζ ∈ X, (b1, b2) ∈ BI• ×B such that ht(|b2|) ≤ N. It is clear that P (N) ∩ Ḃ

is a canonical basis of P (N).

Lemma 6.4. For λ, µ ∈ X+, the subspace P (N)(η•λ ⊗ ηµ) of L(λ) ⊗ L(µ) is stable
under the action of ψı.

Proof. Observe by Lemma 6.3 that ψı(b
+
1 b
−(η•λ⊗ ηµ)) = b+1 ψı(b

−(η•λ ⊗ ηµ)) for (b1, b) ∈
BI• ×B. Hence it suffices to show that

ψı(u(η
•
λ ⊗ ηµ)) ∈ P (N)(η•λ ⊗ ηµ), for u ∈ U−ν with ht(ν) ≤ N.

We prove this by induction on N . When N = 0, the statement is trivial. Let us prove

for u = F a1
i1
F a2
i2

· · ·F ak
ik

with
∑k

i=1 ai = N that ψı

(
u(η•λ ⊗ ηµ)

)
∈ P (N)(η•λ ⊗ ηµ). We
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shall compare ψı

(
u(η•λ⊗ηµ)

)
with Ba1

i1
Ba2

i2
· · ·Bak

ik
(η•λ⊗ηµ). Since Bi’s are ψı-invariant,

it follows by (3.9) that

ψı

(
u(η•λ ⊗ ηµ)

)
⊂ Ba1

i1
Ba2

i2
· · ·Bak

ik
(η•λ ⊗ ηµ) + ψı

(
P (N − 1)(η•λ ⊗ ηµ)

)
.

Hence the lemma follows by induction. �

Recall the partial order ≤ on X from (2.1).

Definition 6.5. We define a partial ordering ≤ı on B×B, and hence on BI•×B as well
by restriction, by letting (b′1, b

′
2) ≤ı (b1, b2), for b, b

′ ∈ B, if and only if Conditions (1)–
(3) hold:

(1) |b′1| − |b′2| = |b1| − |b2| (in Xı);
(2) (|b′1| − |b′2|)− (|b1| − |b2|) ∈ N[I] ∩ N[w•I];
(3) |b′2| ≤ |b2|.

We say (b′1, b
′
2) <ı (b1, b2) if (b′1, b

′
2) ≤ı (b1, b2) and (b′1, b

′
2) 6= (b1, b2). This partial

ordering is compatible with the partial ordering ≤ı on B (by taking b1 = b′1 = 1 above).

Lemma 6.6. The partial ordering ≤ı on BI• ×B is downward finite, that is, for any
fixed (b1, b2) ∈ BI• × B, there are only finitely many (b′1, b

′
2) ∈ BI• × B such that

(b′1, b
′
2) ≤ı (b1, b2).

Proof. Note that |b′1| ∈ N[I•] for any b′1 ∈ BI• . Thanks to Definition 6.5(3), there are
only finitely many b′2 ∈ B, such that (b′1, b

′
2) ≤ı (b1, b2). Now by Definition 6.5(1),

we have |b′1| = |b1| − |b2|+ |b′2|. There are only finitely many b′1 ∈ BI• satisfying this
condition thanks to (3.3). �

Lemma 6.7. Let λ, µ ∈ X+ and let ζ = w•λ+ µ. For any (b1, b2) ∈ BI• ×B, we have

ψı

(
(b1♦ζb2)(η

•
λ⊗ηµ)

)
= (b1♦ζb2)(η

•
λ⊗ηµ)+

∑

(b′
1
,b′

2
)<ı(b1,b2)

f(b1, b2; b
′
1, b
′
2)(b

′
1♦ζb

′
2)(η

•
λ⊗ηµ),

where f(b1, b2; b
′
1, b
′
2) ∈ A.

Proof. Recall ψı = Υ ◦ ψ. By Theorem 5.3 and Lemma 6.4, we have

ψı

(
(b1♦ζb2)(η

•
λ ⊗ ηµ)

)
=

∑

|b′
2
|≤|b2|

f(b1, b2; b
′
1, b
′
2)(b

′
1♦ζb

′
2)(η

•
λ ⊗ ηµ),

where f(b1, b2; b
′
1, b
′
2) ∈ A and (b′1, b

′
2) ∈ BI• ×B.

Note that we can first view Lı(λ, µ) as a basedU-module, ignoring the tensor product
structure. Note that by definition we have |(b1♦ζb2)(η

•
λ ⊗ ηµ)| = |b1| − |b2|+ ζ. Hence

conditions (1) and (2) can be translated to (b′1♦ζb
′
2)(η

•
λ⊗ηµ) ≤ı (b1♦ζb2)(η

•
λ⊗ηµ). Here

≤ı is the partial ordering on basedU-modules defined in Section 5.3. We abuse the nota-
tion due to compatibility. Therefore thanks to Lemma 5.6, we see that f(b1, b2; b1, b2) =
1, and f(b1, b2; b

′
1, b
′
2) = 0 unless Conditions (1)–(2) in Definition 6.5 hold. Condition

(3) in Definition 6.5 follows from Lemma 6.4. �

Now we obtain the following refinement of Theorem 5.7 for the based module Lı(λ, µ).

Proposition 6.8. Let λ, µ ∈ X+ and let ζ = w•λ+ µ and ζı = ζ.
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(1) For any (b1, b2) ∈ BI• ×B , there is a unique element in Lı(λ, µ), denoted by
(b1♦ζıb2)

ı
w•λ,µ

(or by
(
(b1♦ζb2)(η

•
λ ⊗ ηµ)

)ı
sometimes), which is ψı-invariant

and of the form

(6.1) (b1♦ζb2)(η
•
λ ⊗ ηµ) +

∑

(b′
1
,b′

2
)≤ı(b1,b2)

q−1Z[q−1](b′1♦ζb
′
2)(η

•
λ ⊗ ηµ).

(2) The set Bı(λ, µ) =
{
(b1♦ζıb2)

ı
w•λ,µ

|(b1, b2) ∈ BI• ×B
}
\{0} forms an A-basis of

AL
ı(λ, µ) and a Z[q−1]-basis of Lı(λ, µ) (defined in 2.4) (called the ı-canonical

basis).

Remark 6.9. By a standard argument (cf. [Lu94, proof of Proposition 25.1.10]), the
uniqueness of the ı-canonical basis elements (b1♦ζıb2)

ı
w•λ,µ

does not require the partial

ordering constraint in (6.1); that is, (b1♦ζıb2)
ı
w•λ,µ

is characterized by being ψı-invariant
and of the form

(b1♦ζıb2)
ı
w•λ,µ ∈ (b1♦ζb2)(η

•
λ ⊗ ηµ) +

∑

(b′
1
,b′

2
)

q−1Z[q−1](b′1♦ζb
′
2)(η

•
λ ⊗ ηµ).

Now taking µ = 0, we obtain the following generalization of Theorem 5.10.

Corollary 6.10. Let λ ∈ X+. Then we have the ı-canonical basis of L(λ) which
consists of the nonzero elements of the form

(
(b1♦ζb2)η

•
λ

)ı
for (b1, b2) ∈ BI• ×B.

6.2. A projective system of Uı-modules. We shall give a construction of a pro-
jective system of Uı-modules

{
Lı(λ + ντ , µ + ν)

}
ν∈X+ , for fixed λ, µ ∈ X+. Our

construction essentially reduces to [Lu94, 25.1.4–5] in case that I = I•.

Lemma 6.11. For any ν ∈ X+, there exists a homomorphism of Uı-modules

δı = δıν : L(ντ )⊗ L(ν) −→ Q(q),

such that δıν(η
•
ντ ⊗ ην) = 1.

Proof. Recall the Uı-isomorphism T : L(ντ ) → ωL(ν) in Theorem 4.18. Define a Uı-
homomorphism δı = δ◦(T⊗id), where δ : ωL(ν)⊗L(ν) → Q(q) is theU-homomorphism
defined in [Lu94, Proposition 25.1.4]. Clearly δıν(η

•
ντ ⊗ ην) = 1. �

Proposition 6.12. For any λ, µ, ν ∈ X+, there exists a Uı-homomorphism

π = πλ,µ,ν : L(λ+ ντ )⊗ L(µ + ν) −→ L(λ)⊗ L(µ)

such that π(η•λ+ντ ⊗ ηµ+ν) = η•λ ⊗ ηµ. Hence, we have a unique Uı-homomorphism

(6.2) π : Lı(λ+ ντ , µ+ ν) −→ Lı(λ, µ)

such that π(η•λ+ντ ⊗ ηµ+ν) = η•λ ⊗ ηµ.

Proof. Recall the U-homomorphism χ from Lemma 2.3 and the R-matrix R associated
with U defined in [Lu94, §32.1]. We shall rescale the R-matrix accordingly. We define
a U-homomorphism as the composition χ′′ = (1⊗ R⊗ 1) ◦ (χ⊗ χ):

χ′′ : L(λ+ ντ )⊗ L(µ+ ν)
χ⊗χ
−→ L(ντ )⊗ L(λ)⊗ L(ν)⊗ L(µ)

1⊗R⊗1
−→ L(ντ )⊗ L(ν)⊗ L(λ)⊗ L(µ)
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such that

η•λ+ντ ⊗ ηµ+ν 7→ η•ντ ⊗ ην ⊗ η•λ ⊗ ηµ.

Then the Uı-homomorphism π := (δıν⊗ id)◦χ′′ satisfies that π(η•λ+ντ ⊗ηµ+ν) = η•λ⊗ηµ.
The restriction of π provides aUı -homomorphism (6.2), and its uniqueness follows from
Lemma 6.2. �

Proposition 6.13. The homomorphism π : Lı(λ + ντ , µ + ν) −→ Lı(λ, µ) commutes
with the bar involutions ψı; that is,

π ◦ ψı(m) = ψı ◦ π(m), for all m ∈ Lı(λ+ ντ , µ + ν).

Proof. Thanks to Lemma 6.2, we can write m = u(η•λ+ντ ⊗ ηµ+ν) for u ∈ Uı. Recall
that ψı(η

•
λ+ντ ⊗ ηµ+ν) = (η•λ+ντ ⊗ ηµ+ν) by Lemma 6.3. We have

π ◦ ψı(m) = π ◦ ψı(u(η
•
λ+ντ ⊗ ηµ+ν)) = ψı(u)π(η

•
λ+ντ ⊗ ηµ+ν) = ψı(u)(η

•
λ ⊗ ηµ).

We also have

ψı ◦ π(m) = ψı ◦ π(u(η
•
λ+ντ ⊗ ηµ+ν)) = ψı(u)ψı ◦ π(η

•
λ+ντ ⊗ ηµ+ν) = ψı(u)(η

•
λ ⊗ ηµ).

The proposition follows. �

6.3. A stabilization property. Denote by Lı(λ, µ) the Z[q−1]-lattice spanned by the
canonical basis (hence also the ı-canonical basis) of Lı(λ, µ). By λ ≫ 0 (say, λ is
sufficiently large) we shall mean that the integers 〈i, λ〉 for all i are sufficiently large (in
particular, we have λ ∈ X+).

Let us first explain the simple idea for this subsection before going to the technical
details. We want to study the contraction map π in (6.2) “at the limit ν 7→ ∞” and
ultimately prove Proposition 6.16. But the map π does not map Lı(λ + ντ , µ + ν)
to Lı(λ, µ) in general. (In our QSP setting, we do not have at our disposal the ı-
counterpart of [Lu94, 25.1. 6] which relies on [Lu94, 25.1.2(b), 25.1.4(b)].) We instead
study the problem as to whether or not the image of (b1♦ζb2)(η

•
λ+ντ ⊗ ηµ+ν) under π

lies in Lı(λ, µ), for fixed (b1, b2) ∈ BI•×B. The idea is to show that π
(
(b1♦ζb2)(η

•
λ+ντ ⊗

ηµ+ν)
)
∈ Lı(λ, µ), for λ, µ, ν sufficiently large.

In this section, we often require that λ, µ≫ 0 while fixing ζı = w•λ+ µ ∈ Xı. Note
that this is always possible, since we have ν + w•τ(ν) = 0 ∈ Xı for any ν ∈ X. In other
words, we can always replace λ with λ+ ντ and µ with µ+ ν, respectively, for ν ∈ X.

Lemma 6.14. Let ζı ∈ Xı, ν ∈ X+ and (b1, b2) ∈ BI• ×B be fixed. Let λ, µ ∈ X+ be
such that w•λ + µ = ζ for some ζ ∈ X with ζ = ζı. Hence ζ ′ := w•(λ + ντ ) + µ + ν
satisfies that ζ ′ = ζı. Then, for λ, µ ≫ 0, the map πλ,µ,ν : Lı(λ+ ντ , µ+ ν) → Lı(λ, µ)
satisfies

πλ,µ,ν
(
(b1♦ζ′b2)(η

•
λ+ντ ⊗ ηµ+ν)

)
≡ (b1♦ζb2)(η

•
λ ⊗ ηµ), mod q−1Lı(λ, µ).

Proof. The symbol “λ 7→ ∞” below means that 〈i, λ〉 tends to ∞ for all i ∈ I. In this
proof we denote by limλ,µ7→∞ the limit where λ, µ 7→ ∞ while fixing w•λ+ µ = ζı. We
shall proceed in two steps.
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(1) First we prove the lemma in the special case when b1 = 1. We write b = b2 to
simplify the notation here. Then we have 1♦ζ′b = b−1ζ′ . Let

∆(b−) = 1⊗ b+
∑

b′ 6=1

a(b′, b′′)b′− ⊗ b′′−K̃−|b′|, where b′, b′′ ∈ B.

It follows by (6.2) that

χ′′(b−(η•λ+ντ ⊗ ηµ+ν))

=(η•ντ ⊗ ην)⊗ b(η•λ ⊗ ηµ) +
∑

a(b′, b′′)b′−(η•ντ ⊗ ην)⊗ b′′−K̃−|b′|(η
•
λ ⊗ ηµ),

and hence

πλ,µ,ν(b
−(η•λ+ντ ⊗ ηµ+ν))

=b−(η•λ ⊗ ηµ) +
∑

b′ 6=1

a(b′, b′′)δıν

(
b′−(η•ντ ⊗ ην)

)
b′′−K̃−|b′|(η

•
λ ⊗ ηµ).

(6.3)

By Theorem 2.6, we have b′′−(η•λ ⊗ ηµ) ∈ B(λ, µ) ∪ {0} for any b′′ ∈ B.

Now if 1 6= b′− ∈ U−I• , we have

δıν

(
b′−(η•ντ ⊗ ην)

)
= b′−

(
δıν(η

•
ντ ⊗ ην)

)
= 0.

Therefore we have (if b′ 6= 1)

a(b′, b′′)δıν
(
b′−(η•ντ ⊗ ην)

)
K̃−|b′|(η

•
λ ⊗ ηµ) = 0,

a(b′, b′′)δıν
(
b′−(η•ντ ⊗ ην)

)
b′′−K̃−|b′|(η

•
λ ⊗ ηµ) = 0.

(6.4)

If b′− 6∈ U−I• , we write |b′| =
∑

i∈I•
aii +

∑
j∈I◦

cjj for ai, cj ≥ 0, and some cj 6= 0.
Then we have

K̃−|b′|(η
•
λ ⊗ ηµ) =

∏

i∈I•

q
−ai〈i,w•λ+µ〉
i

∏

j∈I◦

q
−cj〈j,w•λ+µ〉
j η•λ ⊗ ηµ

=
∏

i∈I•

q
−ai〈i,w•λ+µ〉
i

∏

j∈I◦

q
−cj〈w•j,λ〉
j

∏

j∈I◦

q
−cj〈j,µ〉
j

︸ ︷︷ ︸
=:q

−s
b′,λ,µ

η•λ ⊗ ηµ.

Since w•λ+ µ = ζı ∈ Xı,
∏

i∈I•
q
−ai〈i,w•λ+µ〉
i depends only on ζı (since Z[I•] ⊂ Y ı) and

hence is fixed. Note that w•j > 0, for j ∈ I◦. So we have

(6.5) lim
λ,µ7→∞

−sb′,λ,µ = −∞.

On the other hand, since ν is fixed, we see that

δıν

(
b′−(η•ντ ⊗ ην)

)
∈ qsνZ[q−1], for some sν ∈ N.

We can choose sν to be independent of b′− thanks to Theorem 2.6 and the finite-
dimensionality of Lı(ντ , ν).
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Note that a(b′, b′′) depends only on b and is independent of λ, µ. Let tb ∈ N such
that q−tba(b′, b′′) ∈ Z[q−1] for all b′, b′′. Therefore we have

(6.6) a(b′, b′′)δıν

(
b′−(η•ντ ⊗ ην)

)
K̃−|b′|(η

•
λ ⊗ ηµ) ∈ q−sb′,λ,µ+tb+sνZ[q−1](η•λ ⊗ ηµ),

and

a(b′, b′′)δıν

(
b′−(η•ντ ⊗ ην)

)
b′′−K̃−|b′|(η

•
λ ⊗ ηµ) ∈ q−sb′,λ,µ+tb+sνLı(λ, µ).

Since there are only finitely many b′ � b (and b′′ � b), let sb,λ,µ = min{sb′,λ,µ|b
′ � b}.

Thus the combination of (6.4) and (6.6) implies (recall b′ 6= 1)
(6.7)

a(b′, b′′)δıν

(
b′−(η•ντ ⊗ ην)

)
K̃−|b′|(η

•
λ ⊗ ηµ) ∈ q−sb,λ,µ+tb+sνZ[q−1](η•λ ⊗ ηµ), for all b

′ � b.

Equation (6.5) and the finiteness of the set {sb′,λ,µ|b
′ � b} imply that

(6.8) lim
λ,µ→∞

(−sb,λ,µ + tb + sν) =
(
− lim

λ,µ→∞
sb,λ,µ

)
+ tb + sν = −∞.

Note that 1♦ζb = b−1ζ and 1♦ζ′b = b−1ζ′ . Summarizing, for λ, µ ≫ 0, we have

πλ,µ,ν
(
(1♦ζ′b)(η

•
λ+ντ ⊗ ηµ+ν)

)
≡ b−(η•λ ⊗ ηµ) ≡ (1♦ζb)(η

•
λ ⊗ ηµ), mod q−1Lı(λ, µ).

This finishes the proof in the case when b1 = 1.

(2) Now we deal with the general case, by letting b1 ∈ BI• and b2 ∈ B be arbitrarily
fixed. We can write

b1♦ζ′b2 =
∑

|′b1|≤|b1|,|′b2|≤|b2|

f(′b1,
′b2)
′b+1
′b−2 1ζ′ , f(′b1,

′b2) ∈ A.

Note that f(′b1,
′b2) ∈ A depends only on ′b1,

′b2 and ζı = ζ (by Proposition 2.10).
Since the set {(′b1,

′b2)||
′b1| ≤ |b1|, |

′b2| ≤ |b2|} is finite, there exits sf ∈ N such that
f(′b1,

′b2) ∈ qsfZ[q−1], for all ′b1,
′b2.

The elements ′b+1 ∈ UI• commute with the UI•-homomorphism πλ,µ,ν . Following
Equation (6.3) and the notation therein, we have

πλ,µ,ν

(
′b+1
′b−2 (η

•
λ+ντ ⊗ ηµ+ν)

)

=′b+1
′b−2 (η

•
λ ⊗ ηµ) +

∑

b′
2
6=1

a(′b′2,
′b′′2)δ

ı
ν

(
′b′−2 (η•ντ ⊗ ην)

)
′b+1
′b′′−2 K̃−|′b′

2
|(η
•
λ ⊗ ηµ).

Let s′b1,′b′′2 ∈ N be such that ′b+1
′b′′−2 1ζ ∈ q

s′b1,′b′′2 Z[q−1]Ḃ1ζ . By Proposition 2.10,

s′b1,′b′′2 depends only on ζı, but not on ζ, since 〈i, ζı〉 = 〈i, ζ〉 for all i ∈ I•.

Now for a fixed ′b2 ∈ B, there are only finitely many |′b′′2 | ≤ |′b2| (and |′b′2| ≤ |′b2|).
Let s′b1,′b2 = max

{
s′b1,′b′′2 , ∀

′b′′2 with |′b′′2| ≤ |′b2|
}
. Then we have

′b+1
′b′′−2 1ζ ∈ qs′b1,′b2Z[q−1]Ḃ1ζ , ∀ ′b′′2 with |′b′′2 | ≤ |′b2|.

Let mb1,b2 = max
{
s′b1,′b2 , ∀

′b1,
′b2 with |′b1| ≤ |b1|, |

′b2| ≤ |b2|
}
. Then we have

′b+1
′b′′−2 1ζ ∈ qmb1,b2Z[q−1]Ḃ1ζ , for all |′b′′2| ≤ |′b2|, |

′b2| ≤ |b2|, |
′b1| ≤ |b1|.
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Then thanks to Equation (6.7) and Theorem 2.6, we have, for all |′b′′2| ≤ |′b2| and
′b′2 6= 1,

f(′b1,
′b2)a(

′b′2,
′b′′2)δ

ı
ν

(
′b′−2 (η•ντ ⊗ ην)

)
′b+1
′b′′−2 K̃−|′b′

2
|(η
•
λ ⊗ ηµ)

∈ q−s′b2,λ,µ+t′b2
+sν+mb1,b2

+sfLı(λ, µ).

We see limλ,µ→∞(−s′b2,λ,µ+t′b2+sν+mb1,b2+sf ) = −∞, for all |′b2| ≤ |b2| and
′b′2 6= 1.

Since there are only finitely many ′b2 � b2, we can find λ, µ≫ 0 such that
(6.9)

πλ,µ,ν

(
f(′b1,

′b2)
′b+1
′b−2 (η

•
λ+ντ ⊗ ηµ+ν)

)
≡ f(′b1,

′b2)
′b+1
′b−2 (η

•
λ ⊗ ηµ), mod q−1Lı(λ, µ).

Now summarizing, we can find λ, µ≫ 0 such that

πλ,µ,ν

(
(b1♦ζ′b2)(η

•
λ+ντ ⊗ ηµ+ν)

)

=πλ,µ,ν

( ∑

′b1,′b2

f(′b1,
′b2)
′b+1
′b−2 (η

•
λ+ντ ⊗ ηµ+ν)

)

≡
∑

′b1,′b2

f(′b1,
′b2)
′b+1
′b−2 (η

•
λ ⊗ ηµ) mod q−1Lı(λ, µ)

≡(b1♦ζb2)(η
•
λ ⊗ ηµ) mod q−1Lı(λ, µ).(6.10)

The last identity (6.10) follows from Proposition 2.10. This finishes the proof. �

Now we improve Lemma 6.14 by letting ν ∈ X+ vary.

Lemma 6.15. Let ζı ∈ Xı and (b1, b2) ∈ BI• ×B be fixed. Then for all λ, µ ≫ 0 such
that ζ := w•λ+ µ = ζ satisfies ζ = ζı and for all ν ∈ X+, we have

πλ,µ,ν
(
(b1♦ζ′b2)(η

•
λ+ντ ⊗ ηµ+ν)

)
≡ (b1♦ζb2)(η

•
λ ⊗ ηµ), mod q−1Lı(λ, µ),

where we have denoted ζ ′ = w•(λ+ ντ ) + µ+ ν.

Proof. Let ωi ∈ X such that 〈j, ωi〉 = δi,j for i, j ∈ I. Now we can apply Lemma 6.14
to ν = ωi for each i ∈ I. Since I is a finite set, clearly when λ, µ ≫ 0, we have

π : Lı(λ+ τ(ωi), µ + ωi) −→ Lı(λ, µ), ∀i ∈ I,

satisfying

πλ,µ,ωi

(
(b1♦ζ′b2)(η

•
λ+ωτ

i
⊗ ηµ+ωi

)
)
≡ (b1♦ζb2)(η

•
λ ⊗ ηµ), mod q−1Lı(λ, µ).

Now the lemma follows by induction on ht(ν). �

Recall from Proposition 6.8 the ı-canonical basis
{(

(b1♦ζb2)(η
•
λ⊗ηµ)

)ı
= (b1♦ζıb2)

ı
w•λ,µ

}

of Lı(λ, µ).

Proposition 6.16. Let ζı ∈ Xı and (b1, b2) ∈ BI• × B. Then for all λ, µ ≫ 0 such
that ζ := w•λ+ µ satisfies ζ = ζı and for all ν ∈ X+, we have

πλ,µ,ν

(
(b1♦ζıb2)

ı
w•λ+w•ντ ,µ+ν

)
= (b1♦ζıb2)

ı
w•λ,µ.
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Proof. We write ζ ′ = w•(λ+ ντ ) + µ+ ν. Recall from Proposition 6.8 that
(
(b1♦ζb2)(η

•
λ+ντ ⊗ ηµ+ν)

)ı
∈ (b1♦ζb2)(η

•
λ+ντ ⊗ ηµ+ν)

+
∑

(b′
1
,b′

2
)≤ı(b1,b2)

q−1Z[q−1](b′1♦ζb
′
2)(η

•
λ+ντ ⊗ ηµ+ν).

Applying Lemma 6.15 to all (finitely many in total thanks to Lemma 6.6) (b′1, b
′
2) ∈

BI• ×B such that (b′1, b
′
2) ≤ı (b1, b2), we have

πλ,µ,ν
(
b′1♦ζ′b

′
2(η
•
λ+ντ ⊗ ηµ+ν)

)
≡ b′1♦ζb

′
2(η
•
λ ⊗ ηµ), mod q−1Lı(λ, µ),

for all (b′1, b
′
2) ≤ı (b1, b2). Hence we have

(6.11) πλ,µ,ν

(
(b1♦ζıb2)

ı
w•λ+w•ντ ,µ+ν

)
= (b1♦ζıb2)

ı
w•λ,µ, mod q−1Lı(λ, µ).

We know by Proposition 6.13 that πλ,µ,ν

(
(b1♦ζıb2)

ı
w•λ+w•ντ ,µ+ν

)
is ψı-invariant. There-

fore the proposition follows by (6.11) and the characterization property in Proposi-
tion 6.8(1) and Remark 6.9 of the ı-canonical basis element

(
(b1♦ζb2)(η

•
λ ⊗ ηµ)

)ı
. �

6.4. Canonical basis on U̇ı. We are in a position to construct the ı-canonical basis
of U̇ı. Recall the A-subalgebra AU̇

ı of U̇ı from Definition 3.19.

Theorem 6.17. Let ζı ∈ Xı and (b1, b2) ∈ BI• ×B.

(1) There is a unique element u = b1♦
ı
ζı
b2 ∈ U̇ı such that

u(η•λ ⊗ ηµ) = (b1♦ζıb2)
ı
w•λ,µ ∈ Lı(λ, µ),

for all λ, µ ≫ 0 with w•λ+ µ = ζı.
(2) The element b1♦

ı
ζı
b2 is ψı-invariant.

(3) The set Ḃı = {b1♦
ı
ζı
b2
∣∣ζı ∈ Xı, (b1, b2) ∈ BI• × B} forms a Q(q)-basis of U̇ı

and an A-basis of AU̇
ı.

Proof. (1) For N1, N2 ≥ 0, let P ı(N1, N2) be the subspace of U̇ı spanned by elements
of the form Ba1

i1
Ba2

i2
· · ·Bas

is
b+1ζ for various ζ ∈ Xı and b ∈ BI• such that

∑s
i=1 ai ≤ N1

and ht(|b|) ≤ N2. It is easy to see that ψı

(
P ı(N1, N2)

)
= P ı(N1, N2).

Let P (N1, N2) be the Q(q)-subspace of Ṗ spanned by elements of the form b−2 b
+
1 1ν

such that b1 ∈ BI• with ht(|b1|) ≤ N1 and b2 ∈ B with ht(|b2|) ≤ N2, for various
ν ∈ X.

Recall the U̇ı-module homomorphism pı,ν in Lemma 3.22. For any N ′′1 , N
′′
2 ≥ 0 and

ν ∈ X, we can find (sufficiently large) N1, N2 and (larger) N ′1, N
′
2 such that

(6.12) P (N ′′1 , N
′′
2 )1ν ⊂ pı,ν(P

ı(N1, N2)) ⊂ P (N ′1, N
′
2)1ν .

Consider ζ = w•λ + µ, for λ, µ ∈ X subject to the constraint ζ = ζı. Assume
that b′1♦ζb

′
2 ∈ P (N ′′1 , N

′′
2 ) for all (b′1, b

′
2) ≤ı (b1, b2). We shall use below the alterna-

tive and more informative notation
(
(b1♦ζb2)(η

•
λ ⊗ ηµ)

)ı
for (b1♦ζıb2)

ı
w•λ,µ

. Then by
Proposition 6.8, we have

(
(b1♦ζb2)(η

•
λ ⊗ ηµ)

)ı
∈ P (N ′′1 , N

′′
2 )(η

•
λ ⊗ ηµ).
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Note that by the definition of pı,ζ in Lemma 3.22 we have

u(η•λ ⊗ ηµ) = pı,ζ(u)(η
•
λ ⊗ ηµ), for u ∈ U̇ı1ζ ,

Therefore by (6.12) there exists an element u ∈ P ı(N1, N2)1ζ such that

u(η•λ ⊗ ηµ) =
(
(b1♦ζb2)(η

•
λ ⊗ ηµ)

)ı
.

Now take λ, µ ≫ 0 so that we have the linear isomorphism

P (N ′1, N
′
2)1ζ

∼= P (N ′1, N
′
2)(η

•
λ ⊗ ηµ).

Hence it follows by (6.12) that such u ∈ P ı(N1, N2)1ζı is unique (which in particular
does not depend on the choices of N ′′1 , N1, N

′
1, N

′′
2 , N2, N

′
2). We write u = (b1♦

ı
ζı
b2)λ,µ.

Now assume we can find another such element (b1♦
ı
ζı
b2)λ+ντ ,µ+ν ∈ P ı(N ′1, N

′
2)1ζı for

ν ∈ X+ (we can always enlarge N ′′1 , N1, N
′
1, N

′′
2 , N2, N

′
2). Proposition 6.16 implies that

(for λ, µ≫ 0)

(b1♦
ı
ζıb2)λ+ντ ,µ+ν(η

•
λ ⊗ ηµ) =πλ,µ,ν

(
(b1♦

ı
ζb2)λ+ντ ,µ+ν(η

•
λ+ντ ⊗ ηµ+ν)

)

=
(
(b1♦ζb2)(η

•
λ ⊗ ηµ)

)ı
.

Therefore by the uniqueness of (b1♦
ı
ζı
b2)λ,µ, we have (b1♦

ı
ζı
b2)λ,µ = (b1♦

ı
ζı
b2)λ+ντ ,µ+ν .

Hence we can define

b1♦
ı
ζıb2 = lim

λ,µ→∞
(b1♦

ı
ζıb2)λ,µ.

This proves (1).

(2) Since by Lemma 6.2 we have
(
ψı(b1♦

ı
ζıb2)

)
(η•λ ⊗ ηµ) = ψı

(
(b1♦

ı
ζıb2)(η

•
λ ⊗ ηµ)

)
= (b1♦

ı
ζıb2)(η

•
λ ⊗ ηµ),

for all λ, µ ≫ 0. Hence by the uniqueness from (1), we have ψı(b1♦
ı
ζı
b2) = b1♦

ı
ζı
b2.

This proves (2).

(3) We first show that b1♦
ı
ζı
b2 lies in AU̇

ı. Let γ ∈ X. Thanks to Lemma 3.20, it

suffices to prove that b1♦
ı
ζı
b2 · 1γ ∈ AU̇. We can assume that γ = ζı, otherwise the

claim is trivial.
We can write γ = µ − λτ for some µ, λ ≫ 0. Let ζ = w•λ + µ. Note that ζ = ζı.

Now thanks to Theorem 4.18, we have the following isomorphism of AU̇
ı-modules

T ⊗ id :AL
ı(λ, µ) −→ ω

AL(λ
τ )⊗A AL(µ),

η•λ ⊗ ηµ 7→ ξ−λτ ⊗ ηµ.

Since µ, λ≫ 0, we have (b1♦
ı
ζı
b2)(η

•
λ⊗ηµ) =

(
(b1♦ζb2)(η

•
λ⊗ηµ)

)ı
∈ AL

ı(λ, µ), hence

(b1♦
ı
ζı
b2)(ξ−λτ ⊗ ηµ) ∈

ω
A
L(λτ ) ⊗A AL(µ). Since we know µ, λ ≫ 0, we conclude that

b1♦
ı
ζı
b2 · 1γ ∈ AU̇.

Now let x be any element in AU̇
ı1ζı . We can assume x ∈ P ı(N1, N2)1ζı . Take

λ, µ ∈ X such that ζ = w•λ+ µ satisfies ζ = ζı. Then by definition of AU̇
ı, we have

x(η•λ ⊗ ηµ) =
∑

b1,b2

f(b1, b2)
(
(b1♦ζb2)(η

•
λ ⊗ ηµ)

)ı
, for f(b1, b2) ∈ A.
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Thanks to the linear isomorphism P (N ′1, N
′
2)1ζ

∼= P (N ′1, N
′
2)1ζ(η

•
λ ⊗ ηµ), we have

x =
∑

b1,b2

f(b1, b2)(b1♦
ı
ζıb2).

Hence
{
b1♦

ı
ζı
b2
∣∣(b1, b2) ∈ BI• × B

}
spans AU̇

ı1ζı . The linear independence can be
proved entirely similarly. �

Remark 6.18. The condition “λ, µ ≫ 0” in Theorem 6.17(1) cannot be removed com-
pletely in general but can likely be much weakened, as suggested in the case of QSP
of type AI1 (I = {i} and I• = ∅) with some particular choice of parameter κi 6= 0
(see [BW13, §4.2] for the case κi = 1). But this condition can be removed for QSP of
type AI1 with κi = 0. That is, for any λ, µ, ν ∈ X+ and (b1, b2) ∈ BI• × B, the map
π : Lı(λ+ ντ , µ + ν) −→ Lı(λ, µ) sends (b1♦ζıb2)

ı
w•(λ+ντ ),µ+ν 7→ (b1♦ζıb2)

ı
w•λ,µ

, where

ζı = w•λ+ µ. The proof follows by the same computation as [BW13, Lemma 4.8 and
Proposition 4.9].

We conjecture that π maps an ı-canonical basis element to an ı-canonical basis
element or zero for general QSP, and moreover, the strong compatibility could still
hold when fixing the parameters properly.

Note (E
(a)
j ♦ı

ζı
1) = E

(a)
j 1ζı , for j ∈ I•.

Corollary 6.19. The A-algebra AU̇
ı is generated by 1♦ı

ζı
F

(a)
i (i ∈ I) and E

(a)
j 1ζı

(j ∈ I•) for various ζı ∈ Xı and a ≥ 0. Moreover, AU̇
ı is a free A-module such that

U̇ı = Q(q)⊗A AU̇
ı.

(These generators of the A-algebra AU̇
ı are called ı-divided powers.)

Proof. Let us denote by V the A-subalgebra of AU̇
ı generated by 1♦ı

ζı
F

(a)
i (i ∈ I) and

E
(a)
j 1ζı (j ∈ I•). Take λ, µ ∈ X+ such that ζı = w•λ+ µ. By an inductive argument

entirely similar to the proof of Claim (⋆) in the proof of Theorem 5.3, we have

V(η•λ ⊗ ηµ) = AU(η•λ ⊗ ηµ) = AP(η•λ ⊗ ηµ) = AL
ı(λ, µ).

Therefore for any (b1, b2) ∈ BI•×B, we have (b1♦
ı
ζı
b2)(η

•
λ⊗ηµ) ∈ V(η•λ⊗ηµ). Retaining

the notation from the proof of Theorem 6.17, we further have

(b1♦
ı
ζıb2)(η

•
λ ⊗ ηµ) ∈

(
V ∩ P ı(N1, N2)

)
(η•λ ⊗ ηµ)

for some N1 and N2 independent of choices of λ, µ (such that ζı = w•λ+ µ). Now
taking λ, µ → ∞, following the same argument as in the proof of Theorem 6.17, we
conclude that b1♦

ı
ζı
b2 ∈ V, that is, every canonical basis element of AU̇

ı lies in V.

Hence we have V = AU̇
ı, and the corollary follows. �

We have the following improvement of Lemma 3.22.

Corollary 6.20. For λ ∈ X, the map pı,λ : AU̇
ı1λ −→ AṖ1λ is an isomorphism of

(free) A-modules.
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Proof. It remains to prove the surjectivity. We basically rerun the proof of Lemma 3.22
with the help of Corollary 6.19. Let b ∈ BI• . As an analogue of (3.15), we consider
(6.13)

pı
(
(1♦ı

ζıF
(a1)
i1

)(1♦ı
ζıF

(a2)
i2

) · · · (1♦ı
ζıF

(as)
is

)
)
= F

(a1)
i1

F
(a2)
i2

· · ·F
(as)
is

b+1λ + lower terms,

where the lower terms are a A-linear combination of F
(a′

1
)

j1
· · ·F

(a′t)
jt

b′+1λ for various

b ∈ BI• and a′j with a
′
1+. . .+a

′
t < a1+. . .+as. It follows by an induction on a1+. . .+as

that F
(a1)
i1

F
(a2)
i2

· · ·F
(as)
is

b+1λ ∈ pı,λ(AU̇
ı1λ). The surjectivity now follows. �

6.5. Canonical bases for Levi subalgebras of Uı. For an admissible subdiagram
with root datum J ⊂ I, recall the Levi subalgebra Uı

J of U
ı from Definition 3.14. Define

U̇ı
J =

⊕

µ∈Xı

Uı
J1µ ⊆ U̇ı.

As (UJ,U
ı
J) forms a quantum symmetric pair of finite type, all constructions for ı-

canonical bases so far are applicable. For λ, µ ∈ X+, we have Uı
J-module Lı

J(λ, µ)

(which reduces to Lı(λ, µ) when J = I). By construction, we have Lı
J(λ, µ) ⊆ Lı(λ, µ).

It follows by the uniqueness in Proposition 6.8 (and its J-variant) thatBı(λ, µ)∩Lı
J(λ, µ)

is the ı-canonical basis of Lı
J(λ, µ). Recall from Theorem 6.17 that Ḃı is the ı-canonical

basis of U̇ı, and U̇ı
J admits an ı-canonical basis. By the uniqueness in Theorem 6.17(1)

(and its J-variant), the ı-canonical basis of U̇ı
J coincides with the subset Ḃı ∩ U̇ı

J of

the ı-canonical basis of U̇ı; this follows from a rerun of the proof of Theorem 6.17. We
summarize this as the following.

Proposition 6.21. For an admissible subdiagram with root datum J ⊂ I, the set Ḃı∩U̇ı
J

forms the ı-canonical basis of U̇ı
J.

6.6. Bilinear forms. The results in this subsection generalize [Lu94, Chapter 26].
Recall the anti-involution ℘ in Proposition 2.1. For J ⊂ I, let wJ be the longest

element in the parabolic Weyl group WJ. Recall [Lu94, Chapter 19] there is a unique
symmetric bilinear form (·, ·) = (·, ·)λ : L(λ)× L(λ) → Q(q) such that

(1) (η, η) = 1;
(2) (ux, y) = (x, ℘(u)y) for all x, y ∈ L(λ) and u ∈ U;
(3) (x, y) = 0 for x ∈ L(λ)µ and y ∈ L(λ)µ′ unless µ = µ′.

Lemma 6.22. For any J ⊂ I, let ηJ = T
−1
wJ

(η) ∈ L(λ) for λ ∈ X+. Then we have

(ηJ, ηJ) = 1.

Proof. By (5.4) (or [Lu94, 39.1.2]), for a reduced expression wJ = si1si2 · · · sin , we have

ηJ = F
(a1)
i1

F
(a2)
i2

· · ·F
(an)
in

η. For any 1 ≤ k ≤ n, we write ηJk = F
(ak)
ik

F
(ak+1)
ik+1

· · ·F
(an)
in

η.

By construction, we have Ek−1η
J
k = Fkη

J
k = 0. Assuming (ηJk, η

J
k) = 1 for k ≥ 2, by an

easy Uq(sl2) computation we have

(ηJk−1, η
J
k−1) = (F

(ak−1)
ik−1

ηJk, F
(ak−1)
ik−1

ηJk) = (ηJk, ℘(F
(ak−1)
ik−1

)F
(ak−1)
ik−1

ηJk) = (ηJk, η
J
k) = 1.

The lemma follows by downward induction on k. �
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For λ, µ ∈ X+, we define a bilinear pairing (·, ·) = (·, ·)λ,µ on L(λ)⊗L(µ), and hence
on the subspace Lı(λ, µ) by restriction, by letting (x ⊗ x′, y ⊗ y′)λ,µ = (x, y)λ(x

′, y′)µ.
The following is immediate from Lemma 6.22.

Corollary 6.23. Let λ, µ ∈ X+. We have (η•λ ⊗ ηµ, η
•
λ ⊗ ηµ)λ,µ = 1.

Lemma 6.24. Let x, y ∈ U̇ı1ζı . When λ, µ tends to ∞ (with w•λ+ µ ∈ Xı being fixed
and equal to ζı),

(
x(η•λ⊗ηµ), y(η

•
λ⊗ηµ)

)
λ,µ

∈ Q(q) converges in Q((q−1)) to an element

in Q(q).

Proof. As the bilinear form (·, ·) on Lı(λ, µ) is defined by restriction from the one on
L(λ)⊗ L(µ), we have by [Lu94, 26.2.2] that, for u, u′ ∈ Uı,

(
u(η•λ ⊗ ηµ), u

′(η•λ ⊗ ηµ)
)
λ,µ

=
(
η•λ ⊗ ηµ, ℘(u)u

′(η•λ ⊗ ηµ)
)
λ,µ
.

Therefore it suffices to prove the lemma for x = 1ζı thanks to Proposition 4.6. Using
the triangular decomposition of U we can write

y1w•λ+µ =
∑

b1,b2∈B

f(y; b1, b2, w•λ+ µ) b−1 b
+
2 1w•λ+µ,

with only finitely many f(y; b1, b2, w•λ+ µ) ∈ Q(q) being nonzero. We have
(
η•λ ⊗ ηµ, y(η

•
λ ⊗ ηµ)

)
λ,µ

=
∑

(b2,b1)∈BI•
×B

f(y; b1, b2, w•λ+µ)
(
η•λ ⊗ ηµ, b

−
1 b

+
2 (η

•
λ ⊗ ηµ)

)
λ,µ
.

Recall the triangular decomposition U = U−U0U+. Following from the embedding
ı : Uı → U and a straightforward computation on the generators, the coefficient
f(y; b1, b2, w•λ + µ) results from applying u1w•λ+µ to

(
η•λ ⊗ ηµ, b

−
1 b

+
2 (η

•
λ ⊗ ηµ)

)
λ,µ

, for

some u ∈
〈
K̃−iK̃−τi(i ∈ I◦), K̃−i(κi 6= 0),Kα(α ∈ Y ı)

〉
. Therefore f(y; b1, b2, w•λ+ µ)

converges in Q((q−1)) to an element in Q(q). Moreover, we have
(
η•λ⊗ηµ, b

−
1 b

+
2 (η

•
λ⊗ηµ)

)
λ,µ

=
(
℘(b−1 )(η

•
λ⊗ηµ), b

+
2 (η

•
λ⊗ηµ)

)
λ,µ

= 0, unless b1, b2 ∈ BI• .

For b1, b2 ∈ BI• , the bilinear pairing
(
η•λ ⊗ ηµ, b

−
1 b

+
2 (η

•
λ ⊗ ηµ)

)
λ,µ

converges in Q((q−1))

to an element in Q(q) since we can regard this bilinear pairing as for Lı
I•
(λ, µ), the

UI• -submodule of Lı(λ, µ) generated by η•λ ⊗ ηµ, and then apply [Lu94, 26.2.3] to U̇I• .
The lemma follows. �

Definition 6.25. We define a symmetric bilinear form (·, ·) : U̇ı × U̇ı → Q(q) as
follows:

(1) For x ∈ U̇ı1ζı and y ∈ U̇ı1ζ′ı with ζı 6= ζ ′ı, we let (x, y) = 0.

(2) For x, y ∈ U̇ı1ζı , we let

(x, y) = lim
(λ,µ)7→∞

(
x(η•λ ⊗ ηµ), y(η

•
λ ⊗ ηµ)

)
λ,µ
.

(Here lim
(λ,µ)7→∞

is understood as in Lemma 6.24.)

We have the following corollary to Lemma 6.24 and its proof.

Corollary 6.26. For all x, y ∈ U̇ı and u ∈ Uı, we have (ux, y) = (x, ℘(u)y).
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Let A = Q[[q−1]] ∩Q(q).

Theorem 6.27. The ı-canonical basis Ḃı of U̇ı is almost orthonormal in the following
sense: for ζı, ζ

′
ı ∈ Xı and (b1, b2), (b

′
1, b
′
2) ∈ BI• ×B, we have

(b1♦
ı
ζıb2, b

′
1♦

ı
ζ′ı
b′2) ≡ δζı,ζ′ıδb1,b′1δb2,b′2 , mod q−1A.

In particular, the bilinear form (·, ·) on U̇ı is non-degenerate.

Proof. The equality is trivial if ζı 6= ζ ′ı. Now assume ζı = ζ ′ı. For λ, µ ≫ 0 such that
w•λ+ µ = ζı, we have

(
(b1♦

ı
ζıb2)(η

•
λ ⊗ ηµ), (b

′
1♦

ı
ζıb
′
2)(η

•
λ ⊗ ηµ)

)
λ,µ

=
((
(b1♦w•λ+µb2)(η

•
λ ⊗ ηµ)

)ı
,
(
(b′1♦w•λ+µb

′
2)(η

•
λ ⊗ ηµ)

)ı)
λ,µ

≡ δb1,b′1δb2,b′2 , mod q−1A.

The first equation above follows by Theorem 6.17, while the second one follows by
Proposition 6.8 and [Lu94, 26.3.1(c)]. Hence by taking lim

(λ,µ)→∞
for the above identity

and applying Lemma 6.24 (see also Definition 6.25) we conclude that
(
b1♦

ı
ζıb2, b

′
1♦

ı
ζıb
′
2

)
≡ δb1,b′1δb2,b′2 , mod q−1A.

This proves the theorem. �

The ı-canonical basis Ḃı admits the following characterization, whose proof is iden-
tical to the proof of [Lu94, Theorem 26.3.1] and hence will be skipped.

Theorem 6.28. Let β ∈ U̇ı. Then β ∈ Ḃı ∪ (−Ḃı) if and only if β satisfies the

following three conditions: β ∈ AU̇
ı, ψı(β) = β, and (β, β) ≡ 1 mod q−1A.

Remark 6.29. For type AIII/AIV with I• = ∅, a geometric construction of the ı-

canonical basis of U̇ı was given in [LW15] (built on the earlier construction in [BKLW]),
which is almost orthonormal with respect to some geometric bilinear form. The iden-
tification between the algebraic constructions (in this paper) and the geometric con-

structions of ı-canonical basis and bilinear from on U̇ı will be addressed elsewhere.
We further expect various positivity properties for ı-canonical bases for some classes

of QSP, similar to Lusztig’s canonical bases.

Appendix A. Integrality of the intertwiners of real rank one

The goal of this appendix is to provide a proof of Theorem 5.3(1) that the intertwiner
Υ lies in (the completion of) the integral form AU

+ for all quantum symmetric pairs
of real rank one; see Table 1.

We shall first establish the integrality of Υ in type AIV and then AIII11, which has
the involution τ |I◦ 6= 1. These two types are easy and similar to the special case treated
in [BW13] (denoted by U therein). The integrality of Υ for type AI1 was essentially
known in [BW13, Lemma 4.6]. Then we will establish some general properties of Υ
for the remaining types with τ |I◦ = 1. Ultimately it requires a tedious type-by-type
analysis to complete the proof for all types with τ |I◦ = 1.
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A.1. Type AIV of rank n. We recall the Satake diagram of type AIV from Table 1:

◦ • • ◦
1 2 n

Proposition A.1. In type AIV, we have Υµ ∈ AU
+ for any µ ∈ N[I].

Proof. Recall that B1 = F1 + ς1Tw•
(En)K̃

−1
1 and Bn = Fn + ςnTw•

(E1)K̃
−1
n . Note that

F1Tw•
(En)K̃

−1
1 = q−21 Tw•

(En)K̃
−1
1 F1, FnTw•

(E1)K̃
−1
n = q−2n Tw•

(E1)K̃
−1
n Fn.

Introduce the divided powers B
(a)
i = Ba

i /[a]!, for all i ∈ I and a ∈ N. Then we have

(A.1) B
(a)
1 =

∑

s+t=a

qst1 F
(s)
1 (Tw•

(En)K̃
−1
1 )(t), B(a)

n =
∑

s+t=a

qstn F
(s)
n (Tw•

(E1)K̃
−1
n )(t).

So B
(a)
i are ψı-invariant and integral (i.e. B

(a)
i ∈ AU), for all i ∈ I. Now for any

λ ∈ X+ and x ∈ AL(λ), we can write

x =
∑

c(a1, . . . , ak)B
(a1)
i1

· · ·B
(ak)
ik

ηλ, for c(a1, . . . , ak) ∈ A.

By Corollary 5.2 and using ψı = Υψ from (5.1), we have Υ(x) = ψı(ψ(x)) ∈ AL(λ).
Taking x = ξ (the lowest weight vector) and λ≫ 0, we have Υµ ∈ AU

+ for any µ. �

A.2. Type AIII11. Recall the Satake diagram of type AIII11 of real rank one from
Table 1:

◦ ◦
1 2

Note that the underline Dynkin diagram is not irreducible. We have Bi = Fi+ςiEjK̃
−1
i

for 1 ≤ i 6= j ≤ 2. Defining the divided powers f
(a)
i = fai /[a]! as usual, we have

B
(a)
i =

∑

s+t=a

qsti F
(s)
i (EjK̃

−1
i )(t) ∈ AU.

Now we are in a position to use (and choose to omit) the same argument as for
Proposition A.1 to obtain the following.

Proposition A.2. In type AIII11, we have Υµ ∈ AU
+ for all µ.

Remark A.3. The integrality of the standard divided powers B
(a)
i ∈ AU for i ∈ I◦ in

types AIV and AIII11 distinguishes these two types from the remaining ones.

A.3. Type AI1. Recall the Satake diagram of type AI1 from Table 1:

◦
1

Since there is only one element in I, we shall drop the index 1 and write B = F +
q−1EK−1 + κK−1. This is the only real rank one case when κ can be non-zero. Set
Υ =

∑
c≥0Υc where Υc = γcE

(c). Proposition A.11 below and its proof are adapted

from [BW13, Lemma 4.6] (where κ = 1).
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Proposition A.4. In type AI1, we have Υc ∈ AU
+ for all c ≥ 0.

Proof. Recall from (3.6) we have κ = κ. Equation (4.9) implies that

(F + q−1EK−1 + κK−1)Υ = Υ(F + qEK + κK),

which can be rewritten as

γc+1 = −(q − q−1)q−c(q[c]γc−1 + κγc).

It follows by induction on c that γc ∈ A, since by definition we know γ0 = 1. �

A.4. Generalities when τ |I◦ = 1. In this subsection, we assume that the Satake
diagrams are real rank one of types with τ |I◦ = 1 and I• 6= ∅ (i.e., of types AII3, BII,
CII, DII, FII); see Table 1. In all these cases, we have the parameters κi = 0, for all
i ∈ I◦. Let

I◦ = {i}.

Then following Theorem 4.8, we have

(A.2) Υ =
∑

c∈N

Υc,

where Υc = Υc(w•i+i) has weight c(w•i + i). Note that (4.9) implies that ψı(Bi)Υ =
Υψ(Bi), that is,

(Fi + ςiTw•
(Ei)K̃

−1
i

)Υ = Υ(Fi + ς−1
i
ψ(Tw•

(Ei))K̃i), FjΥ = ΥFj(j ∈ I•).

Using [Lu94, Proposition 3.16], we have (for c ≥ 1 and j ∈ I•)

ri(Υc) = −(qi − q−1
i

)Υc−1 · ς
−1
i

· ψ(Tw•
(Ei))(A.3)

= −(qi − q−1
i

)(−qi)
〈i,2ρ•〉 · ς−1

i
·Υc−1 · T

−1
w•

(Ei),

ir(Υc) = −(qi − q−1
i

)ςi · q
〈i,w•i〉
i

· Tw•
(Ei)Υc−1,(A.4)

jr(Υc) = rj(Υc) = 0.(A.5)

Recall the shorthand notation w• = w•w0. Let ℓ(w
•) = k. Note w• is of the form

w• = si1si2 · · · sik−1
sik , i1 = ik = i ∈ I◦.

Introduce a shorthand notation Ti1i2···ik−1
= Ti1Ti2 · · · Tik−1

. Applying Proposition 4.15,
we have

(A.6) Υc =
∑

γc(c1, c2, . . . , ck)E
(c1)
i

Ti(E
(c2)
i2

) · · ·
(
Ti1i2···ik−1

(E
(ck)
i

)
)
.

We adopt the convention that E
(a)
j = 0 for any j ∈ I, with a < 0, and γc(c1, c2, . . . , ck) =

0 unless all cj ≥ 0. We shall write γc = γc(c1, c2, . . . , ck) when there is no need to specify
each component.

The following lemma shall be used extensively in this section.

Lemma A.5. [Jan96, Proposition 8.20] For any w ∈W , if w(i′) = j′ ∈ X for i, j ∈ I,
then we have Tw(Ei) = Ej.

Lemma A.6. We have
T
−1
w•

(Ei) = Ti1i2···ik−1
(Ei).
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Proof. We have w•si1si2 · · · sik−1
(i′) = −w0(i

′) = i′. The lemma follows by Lemma A.5.
�

Lemma A.7. Let c ≥ 1. If we have γc−1(c1, c2, . . . , ck) ∈ A for all (c1, c2, . . . , ck), then
(1− q−2

i
)−c1γc(c1, c2, . . . , ck) ∈ A for all (c1, c2, . . . , ck) with c1 ≥ 1.

Proof. Using Lemma A.5 and (A.3), we have

ri(Υc) =
∑

γc(c1, c2, . . . , ck)q
c1−1
i

q
〈i,c(w•i+i)−c1i〉
i

E
(c1−1)
i

Ti(E
(c2)
i2

) · · ·
(
Ti1i2···ik−1

(E
(ck)
i

)
)

=− (qi − q−1
i

)(−qi)
〈i,2ρ•〉 · ς−1

i
·Υc−1 · T

−1
w•

(Ei)

=− (qi − q−1
i

)(−qi)
〈i,2ρ•〉ς−1

i
·

∑
γc−1(c1, c2, . . . , ck)[ck + 1]iE

(c1)
i

Ti(E
(c2)
i2

) · · ·
(
Ti1i2···ik−1

(E
(ck+1)
i

)
)
.

Therefore we have for weight reason that, for c1 ≥ 1,

γc(c1, c2, . . . , ck)q
c1−1
i

q
〈i,c(w•i+i)−c1i〉
i

=− (qi − q−1
i

)(−qi)
〈i,2ρ•〉 · ς−1

i
γc−1(c1 − 1, c2, . . . , ck − 1)[ck]i,

that is,

γc(c1, c2, . . . , ck)

=− (qi − q−1
i

)q
−〈i,c(w•i+i)−c1i〉
i

q1−c1
i

(−qi)
〈i,2ρ•〉ς−1

i
γc−1(c1 − 1, c2, . . . , ck − 1)[ck]i.

(A.7)

It follows by an induction on c1 that (1 − q−2
i

)−c1γc(c1, c2, . . . , ck) ∈ A as long as
c1 ≥ 1. �

Remark A.8. We proved a stronger result than just γc(c1, c2, . . . , ck) ∈ A under our
assumption. The importance shall be clear later in this section.

Our strategy is to prove that Υc ∈ AU
+ by induction on c. The base case at c = 0 is

always true since we have Υ0 = 1. For the induction step we shall compute the precise
actions of rj on Υc for j ∈ I case by case. Then thanks to Lemma A.7, it suffices to
prove that
(A.8)

γc(c1, c2, . . . , ck) ∈ A for all ci, if (1− q−2i )−c1γc(c1, c2, . . . , ck) ∈ A when c1 ≥ 1.

This is what we shall do later in this section case by case.
To facilitate the case-by-case analysis below, let us introduce some shorthand nota-

tions. For a sequence i1i2 . . . ik with ij ∈ I, we shall often use the shorthand notation

Ti1i2···ik = Ti1Ti2 · · · Tik .

In concrete cases below (with labelings as in Table 1), the sequence i1 . . . ik is naturally
partitioned into increasing and decreasing subsequences, and we shall insert indices il
to indicate the local maxima/minima of the sequence. For example, Ti1···il···ik means
the subsequences i1 · · · il and il · · · ik are monotone, and Ti1···il···im···ik means the sub-
sequences i1 · · · il, il · · · im, and im · · · ik are monotone, and so on. Here is a concrete
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example which occurs in Type CII below: the shorthand 2 · · · n · · · 1 · · · n · · · k, for some
1 ≤ k ≤ n, means 2 3 · · · n− 1 n n− 1 · · · 2 12 · · · n− 1 n n− 1 · · · k.

For x, y ∈ U+, we write

[x, y]q−1

i
= xy − q−1i yx.

Since the ring A is invariant under multiplication by qa for any a ∈ Z, we shall often
use the notation q∗ to indicate q-powers without computing the precise exponent when
it is irrelevant.

A.5. Type AII of rank 3. In this subsection we assume the quantum symmetric pair
(U,Uı) is of type AII. We label the Satake diagram as follows:

• ◦ •
1 2 3

Take the reduced expression w• = s2s1s3s2. Then we have

Υc =
∑

γ(c1, c2, c3, c4)E
(c1)
2 · T2(E

(c2)
1 ) · T2(E

(c3)
3 ) · T213(E

(c4)
2 ),

where c = 1
2(c1 + c2 + c3 + c4). (For weight reason Υc = 0 if c is not an integer.)

We then compute the actions of r1 and r3 on those root vectors. Note that we have

T2(E1) = E2E1 − q−1E1E2;

T2(E3) = E2E3 − q−1E3E2;

T213(E2) = (E2E1 − q−1E1E2)E3 − q−1E3(E2E1 − q−1E1E2).

The following lemmas follow from straightforward computation.

Lemma A.9. We have

E1 · T2(E1) = q−1T2(E1) ·E1 and E3 · T2(E3) = q−1T2(E3) · E3,

E1 · T1(E2) = qT1(E2) ·E1 and E3 · T3(E2) = qT3(E2) ·E3,

Lemma A.10. We have

(1) r1(T2(E
(c2)
1 )) = (1− q−2)E2 · T2(E

(c2−1)
1 );

(2) r3(T2(E
(c2)
1 )) = 0;

(3) r1(T2(E
(c3)
3 )) = 0;

(4) r3(T2(E
(c3)
3 )) = (1− q−2)E2 · T2(E

(c3−1)
1 );

(5) r1(T213(E
(c4)
2 )) = (1− q−2)T2(E3) · T213(E

(c4−1)
2 );

(6) r3(T213(E
(c4)
2 )) = (1− q−2)T2(E1) · T213(E

(c4−1)
2 ).

Proposition A.11. In type AII, we have Υc ∈ AU
+ for all c ≥ 0.

Proof. It suffices to prove the statement (A.8) by the general discussion in §A.4. Let
us assume

(1− q−2i )−c1γc(c1, c2, . . . , ck) ∈ A when c1 ≥ 1.
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Since r1(Υc) = r3(Υc) = 0 by (A.5), we have

0 =
1

1− q−2
r1(Υc)

=
∑

γc(c1, c2, c3, c4)[c3 + 1]E
(c1)
2 · T2(E

(c2)
1 ) · T2(E

(c3+1)
3 ) · T213(E

(c4−1)
2 )

+
∑

γc(c1, c2, c3, c4)[c1 + 1]qc4−c3E
(c1+1)
2 · T2(E

(c2−1)
1 ) · T2(E

(c3)
3 ) · T213(E

(c4)
2 ).

It follows that

γc(c1, c2 + 1, c3 + 1, c4)[c1 + 1]qc4−c3 = −γc(c1 + 1, c2, c3, c4 + 1)[c3 + 1].

Therefore we have

γc(0, c2 + 1, c3 + 1, c4) = −qc3−c4γc(1, c2, c3, c4 + 1)[c3 + 1] ∈ A.

It follows that γc(c1, c2, c3, c4) ∈ A if c1, c2 are not all zero. On the other hand, we have
γc(0, 0, c3, c4) = 0 for weight reason. The proposition follows. �

Corollary A.12. We have c1 = c4 and c2 = c3 whenever γc(c1, c2, c3, c4) 6= 0.

A.6. Type DII of rank n ≥ 4. In this subsection we assume the quantum symmetric
pair (U,Uı) is of type DII. We label the Satake diagram is as follows:

◦ • •
•

•1 2

n-1

n

We take the reduced expression w• = s1 · s2 · · · sn−2 · sn−1 · sn · sn−2 · · · s1. Therefore
we can write Υc as

Υc =
∑

γc(c1, . . . , c2n−2)E
(c1)
1 · T1(E

(c2)
2 ) · · · (T1···2(E

(c2n−2)
1 )).

For weight reason, we must have γc(c1, . . . , c2n−2) = 0 unless
∑2n−2

i=1 ci = c.

Lemma A.13. For k 6= 1, we have

rk(T1···i(E
(a)
i+1)) =

{
(1− q−2) T1···(i−1)(Ei) · (T1···i(E

(a−1)
i+1 )), if k = i+ 1;

0, if k 6= i+ 1.

Proof. Let us first assume that i ≤ n− 2. The proof is divided into three cases:

(1) If k ≥ i+ 2, it is clear that rk(T1···i(Ei+1)) = 0.
(2) For k ≤ i, we have

rk
(
T1···(k−1)TkT(k+1)···i(Ei+1)

)
= rk

(
T1···(k−1)[Ek, T(k+1)···i(Ei+1)]q−1

)

= rk
(
[T1···(k−1)(Ek), T(k+1)···i(Ei+1)]q−1

)

= q−1rk
(
T1···(k−1)(Ek)

)
· T(k+1)···i(Ei+1)

− q−1 T(k+1)···i(Ei+1) · rk
(
T1···(k−1)(Ek)

)
= 0.
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(3) For k = i+ 1, we have (for i ≤ n− 2)

T1···i(Ei+1) = T1···(i−1)([Ei, Ei+1]q−1) = [T1···(i−1)(Ei), Ei+1]q−1 .

It follows that

ri+1(T1···i(Ei+1)) = (1− q−2)T1···(i−1)(Ei).

Since Ti(Ei+1) ·Ei = q−1Ei · Ti(Ei+1), we have

ri+1

(
T1···i(E

(a)
i+1)

)
= (1− q−2) T1···(i−1)(Ei) · T1···i(E

(a−1)
i+1 ).

The case i = n− 1 is entirely similar to the case i = n− 2, since Tn−1(En) = En. The
lemma follows. �

Lemma A.14. For i 6= n, n− 1 and k 6= 1, we have

rk
(
T1···n···i(E

(a)
i−1)

)
=





(1− q−2)T1···n···(i+1)(Ei) · T1···n···i(E
(a−1)
i−1 ), if k = i 6= n− 2;

(1− q−2)T1···n(En−2) · T1···n(n−2)(E
(a−1)
n−3 ), if k = i = n− 2;

0, if k 6= i.

Proof. The computation is divided into six cases.

(1) For k ≤ i− 2, we have

T1···n···i(Ei−1) = [T1···(k−1)(Ek), T(k+1)···n···i(Ei−1)]q−1 .

Therefore we have

rk

(
T1···n···i(Ei−1)

)
=rk

(
[T1···(k−1)(Ek), T(k+1)···n···i(Ei−1)]q−1

)

=q−1rk(T1···(k−1)(Ek)) ·
(
T(k+1)···n···i(Ei−1)

)

− q−1
(
T(k+1)···n···i(Ei−1)

)
· rk(T1···(k−1)(Ek)) = 0,

since rk(T1···(k−1)(Ek)) and T(k+1)···n···i(Ei−1) commute.
(2) For k = i− 1, we consider

T1···n···i(Ei−1) = T1···n···(i+1)([Ei, Ei−1]q−1)

= [T1···n···(i+1)(Ei), T1···i(Ei−1)]q−1 = [T1···n···(i+1)(Ei), Ei]q−1 .
(A.9)

Then since i− 1 ≤ i+ 1− 2, by Case (1) we have

ri−1
(
T1···n···i(Ei−1)

)

= q−1ri−1(T1···n···(i+1)(Ei)) · Ei − q−1Ei · ri−1(T1···n···(i+1)(Ei)) = 0.

(3) For k = i, following (A.9) we have

ri(T1···n···i(Ei−1)) = T1···n···(i+1)(Ei)− q−2T1···n···(i+1)(Ei)

= (1− q−2)T1···n···(i+1)(Ei).

More generally we have

ri
(
T1···n···i(E

(a)
i−1)

)
=(1− q−2)T1···n···(i+1)(Ei) · T1···n···i(E

(a−1)
i−1 ).
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(4) For n− 3 ≥ k ≥ i+ 1, we consider

T1···n···i(Ei−1) = T1···n···(k+1)

(
[Ek, T(k−1)···i(Ei−1)]q−1

)

= [T1···n···(k+1)(Ek), Tk···(i+1)(Ei)]q−1 .

Note that rk(Tk···(i+1)(Ei)) = 0 unless k = i. Therefore by Case (2) we have

rk(T1···n···i(Ei−1)) = 0.

(5) For k = n− 2, we consider that

T1···n···i(Ei−1) = T1···n

(
[Ek, T(k−1)···i(Ei−1)]q−1

)
= [T1···n(Ek), Tk···(i+1)(Ei)]q−1 .

Note that rk
(
Tk···(i+1)(Ei)

)
= 0 unless k = i. Therefore by Case (2) we have

rk(T1···n···i(Ei−1)) = 0.

(6) For k = n− 1 (the case k = n is similar), we have (true for i = n− 2 as well)

T1···n···i(Ei−1) = T1···(n−1)

(
[En, T(n−2)···i(Ei−1)]q−1

)

= [T1···(n−1)(En), T(n−1)···(i+1)(Ei)]q−1 .

Note that since by Lemma A.13

rn−1

(
T1···(n−1)(En)

)
= rn−1

(
T(n−1)···(i+1)(Ei)

)
= 0,

we have
rn−1(T1···n···i(Ei−1)) = 0.

This completes the proof. �

Remark A.15. The computation for (1)-(4) in the proof of Lemma A.14 is essentially
a type A computation, and will appear very often for the other cases as well.

Lemma A.16. For k 6= 1, we have

rk(T1···n(E
(a)
n−2)) =





(1− q−2)T1···(n−1)(En) · T1···n(E
(a−1)
n−2 ), if k = n− 1;

(1− q−2)T1···(n−2)n(En−1) · T1···n(E
(a−1)
n−2 ), if k = n;

0, otherwise.

Proof. Note that

T1···n(En−2)

=T1···(n−3)(q
−2EnEn−1En−2 − q−1EnEn−2En−1 − q−1En−1En−2En + En−2En−1En).

Therefore we have rk(T1···n(En−2)) = 0 for k < n−2, thanks to Lemma A.13. It is easy
to see rn−2(T1···n(En−2)) = 0 as well by a direct computation using Lemma A.13.

On the other hand, we have

rn−1(T1···n(En−2)) = q
−3En · T1···(n−3)(En−2)− q−1En · T1···(n−3)(En−2)

− q−2T1···(n−3)(En−2) ·En + T1···(n−3)(En−2) · En

= − q−2T1···(n−2)(En) + T1···(n−2)(En)

= (1− q−2)T1···(n−1)(En).
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Now since En · Tn(En−2) = qTn(En−2) · En, we have

rn−1(T1···n(E
(a)
n−2)) = (1− q−2)T1···(n−1)(En) · T1···n(E

(a−1)
n−2 ).

The computation of rn(T1···n(E
(a)
n−2)) is entirely similar. The lemma follows. �

Proposition A.17. For quantum symmetric pairs of type DII of rank n ≥ 4, we have
Υc ∈ AU

+ for all c ≥ 0.

Proof. Recall by the general discussion in §A.4 it suffices to prove the following state-
ment (which implies (A.8)):

γc(c1, . . . , c2n−2) ∈ A for all ci, if γc(c1, . . . , c2n−2) ∈ A when c1 > 0.

We compare the coefficient of the following terms in the identity rk(Υc) = 0:

E
(c1)
1 · T1(E

(c2)
2 ) · · · (T1···2(E

(c2n−2)
1 )) with ck−1 = 1, cj = 0 for j < k − 1.

We obtain that

(1− q−2)γc(0, . . . , ck−1 = 0, ck, . . . ) ∈ (1− q−2)
∑

γc(. . . , ck−1 = 1, ck − 1, . . . ) ·A.

Therefore thanks to Lemma A.7 for the base case, we have inductively:

(A.10) γc(c1, . . . ) ∈ A, if ck > 0.

The proposition follows. �

A.7. Other types. The proof of part (1) of Theorem 5.3 for QSP of type BII of rank
n ≥ 2, type CII of rank n ≥ 3, and type FII follows from entirely similar computation
as type DII of rank n ≥ 4. The precise details can be found in the (longer) appendix
of the arXiv Version 1 of this paper, and shall be omitted here.
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Table 4. Satake diagrams of irreducible symmetric pairs

AI ◦ ◦◦
DIII

• ◦ • ◦
•

◦

AII • ◦ • ◦ • • ◦ • ◦ •
◦

◦

AIII

◦ ◦ ◦
•

•
◦◦ ◦

EI
◦ ◦ ◦ ◦ ◦

◦

◦ ◦ ◦

◦

◦ ◦ ◦

EII ◦ ◦ ◦ ◦ ◦

◦

AIV ◦ • • ◦ EIII ◦ • • • ◦

◦

BI ◦ ◦ • • • EIV
◦ • • • ◦

•

BII ◦ • • •
EV

◦ ◦ ◦ ◦ ◦ ◦

◦

CI ◦ ◦ ◦ EIV
• ◦ • ◦ ◦ ◦

•

CII
• ◦ • ◦ • • • • EVII

◦ ◦ • • • ◦

•

• ◦ • ◦ • ◦ EVIII
◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

◦ ◦ • •
•

•
EIX

◦ ◦ ◦ • • • ◦

•

DI ◦ ◦
◦

◦
FI ◦ ◦ ◦ ◦

◦ ◦
◦

◦
FII • • • ◦

DII ◦ • •
•

•
G ◦ ◦⇛
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